Publications by authors named "Aldegheri L"

Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic β cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation.

View Article and Find Full Text PDF

Recent evidence has highlighted the role of the gut-brain axis in the progression of autism spectrum disorder (ASD), with significant changes in the gut microbiome of individuals with this condition. This report investigates the effects of probiotics and human milk oligosaccharide (HMO) supplements on the gut microbiome, inflammatory cytokine profile, and clinical outcomes in an ASD adolescent with chronic gastrointestinal dysfunction and cognitive impairment. Following treatment, we observed a decrease in proinflammatory cytokines' concentration alongside relative abundance, a bacterium reported to be linked with gastrointestinal diseases.

View Article and Find Full Text PDF

Introduction: Type 1 diabetes is an autoimmune disease with an significant genetic component, played mainly by the class II genes. Although evidence on the role of class I genes in developing type 1 diabetes and its onset have emerged, current screening is limited to determining DR3 and DR4 haplotypes. This study aimed to investigate the role of genes on type 1 diabetes risk and age of onset by extensive typing.

View Article and Find Full Text PDF

This publication details the discovery of a series of selective transient receptor potential cation channel subfamily M member 5 (TRPM5) agonists culminating with the identification of the lead compound (1R, 3R)-1-(3-chloro-5-fluorophenyl)-3-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile (39). We describe herein our biological rationale for agonism of the target, the examination of the then current literature tool molecules, and finally the process of our discovery starting with a high throughput screening hit through lead development. We also detail the selectivity of the lead compound 39 versus related family members TRPA1, TRPV1, TRPV4, TRPM4 and TRPM8, the drug metabolism and pharmacokinetics (DMPK) profile and in vivo efficacy in a mouse model of gastrointestinal motility.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin 5 (TRPM5) is an intracellular calcium-activated cation-selective ion channel expressed in a variety of cell types. Dysfunction of this channel has recently been implied in a range of disease states including diabetes, enteric infections, inflammatory responses, parasitic infection and other pathologies. However, to date, agonists and positive modulators of this channel with sufficient selectivity to enable target validation studies have not been described, limiting the evaluation of TRPM5 biology and its potential as a drug target.

View Article and Find Full Text PDF

Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a nonselective monovalent cation channel activated by intracellular Ca increase. Within the gastrointestinal system, TRPM5 is expressed in the stoma, small intestine, and colon. In the search for a selective agonist of TRPM5 possessing in vivo gastrointestinal prokinetic activity, a high-throughput screening was performed and compound was identified as a promising hit.

View Article and Find Full Text PDF

Purpose: There is considerable interest in positive allosteric modulators (PAMs) of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) subtype of ionotropic glutamate receptors as therapeutic agents for a range of cognitive and mood disorders. However, the challenge is to increase AMPA receptor (AMPAR) function sufficient to enhance cognitive function but not to the extent that there are mechanism-related pro-convulsant or convulsant side effects. In this present study, we report the preclinical pharmacology data for MDI-222, an AMPAR PAM which enhances cognition but has a much reduced side-effect (i.

View Article and Find Full Text PDF

Kv3.1 and Kv3.2 high voltage-activated potassium channels, which display fast activation and deactivation kinetics, are known to make a crucial contribution to the fast-spiking phenotype of certain neurons.

View Article and Find Full Text PDF

Background And Purpose: P2X3 and P2X2/3 receptors are highly localized on the peripheral and central pathways of nociceptive signal transmission. The discovery of A-317491 allowed their validation as chronic inflammatory and neuropathic pain targets, but this molecule has a very limited oral bioavailability and CNS penetration. Recently, potent P2X3 and P2X2/3 blockers with a diaminopyrimidine core group and better bioavailability were synthesized and represent a new opportunity for the validation of P2X3-containing receptors as targets for pain.

View Article and Find Full Text PDF

A novel series of AMPAR positive modulators is described that were identified by high throughput screening. The molecules of the series have been optimized from a high quality starting point hit to afford excellent developability, tolerability, and efficacy profiles, leading to identification of a clinical candidate. Unusually for an ion channel target, this optimization was integrated with regular generation of ligand-bound crystal structures and uncovered a novel chemotype with a unique and highly conserved mode of interaction via a trifluoromethyl group.

View Article and Find Full Text PDF

A series of novel AMPA receptor positive modulators displaying CNS penetration have been discovered with sub-micromolar activity and good selectivity over the cardiac channel receptor, hERG. We describe here the synthesis of these compounds which are biaryl pyrrolidine and tetrahydrofuran sulfonamides and disclose their activities against the human GluA2 flip isoform homotetrameric receptor.

View Article and Find Full Text PDF

A series of AMPA receptor positive allosteric modulators has been optimized from poorly penetrant leads to identify molecules with excellent preclinical pharmacokinetics and CNS penetration. These discoveries led to 17i, a potent, efficacious CNS penetrant molecule with an excellent pharmacokinetic profile across preclinical species, which is well tolerated and is also orally bioavailable in humans.

View Article and Find Full Text PDF

The effects of fluoxetine (Prozac) on the activity of human small-conductance calcium-activated potassium (SK) channels were investigated utilizing a functional fluorescence assay with bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC(4)(3)). Fluoxetine blocked SK channels stably expressed in HEK 293 cells in a concentration-dependent manner displaying half-maximal inhibitory concentrations (IC(50)) of 9 microM for hSK1, 7 microM for hSK2 and 20 microM for hSK3. The block of hSK3 channels was confirmed by whole cell patch-clamp recordings of the recombinant cells and human TE 671 cells.

View Article and Find Full Text PDF

The pharmacological properties of the rat alpha7 nicotinic acetylcholine receptor endogenously expressed in PC12 cells and recombinantly expressed in GH4C1 cells (alpha7-GH4C1 cells) were characterized and compared. Patch-clamp recordings demonstrated that activation by choline and block by methyllycaconitine and dihydro-beta-erythroidine were similar, but block by mecamylamine was different. Whereas in alpha7-GH4C1 cells the inhibition curve for mecamylamine was monophasic (IC(50) of 1.

View Article and Find Full Text PDF

Group III metabotropic glutamate receptors (mGluRs) are selectively activated by L-2-amino-4-phosphonobutyrate (L-AP4), which produces depression of synaptic transmission. The relative contribution of different group III mGluRs to the effects of L-AP4 remains to be clarified. Here, we assessed the distribution of mGluR4 in the rat and mouse brain using affinity-purified antibodies raised against its entire C-terminal domain.

View Article and Find Full Text PDF

For the identification of modulators of the metabotropic glutamate receptor mGluR7, a functional cell-based high throughput screening (HTS) assay was developed. This assay utilizes the signal transduction pathway of mGluR7, which is negatively coupled to adenylyl cyclase. A cAMP-responsive luciferase reporter gene and rat mGluR7 cDNA were cotransfected into CHO-K1 cells by electroporation.

View Article and Find Full Text PDF

A high throughput scintillation proximity assay (SPA) was developed to identify novel ligands of FKBP-12, an immunophilin with peptidyl prolyl isomerase (rotamase) activity. Recombinant histidine-tagged FKBP-12 was expressed in Escherichia coli, purified by metal ion affinity chromatography, and immobilized to SPA beads by an antibody that recognizes the histidine tag of the recombinant protein. Using 1 nM [3H] FK506, a well-known macrolid ligand of FKBP-12, specific binding was saturable and accounted for 95% of total binding.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae gene YNL234w encodes a 426-amino acid-long protein that shares significant similarities with the globin family. Compared with known globins from unicellular organisms, the Ynl234wp polypeptide is characterized by an unusual structure. In this protein, a central putative heme-binding domain of about 140 amino acids is flanked by two sequences of about 160 and 120 amino acids, respectively, which share no similarity with known polypeptides.

View Article and Find Full Text PDF

This study was aimed to evaluate demographic, clinical, histological, and virological characteristics of 46 hepatitis C virus (HCV) carriers with persistently normal alanine transaminase (ALT) levels and to compare the results with those obtained in a group of 52 HCV-RNA-positive patients with elevated ALT levels. Subjects with normal ALT were more often females (P < .001), were more likely to be asymptomatic (P < .

View Article and Find Full Text PDF