Multidrug resistance is the dominant obstacle to effective chemotherapy for malignant neoplasms. It is well known that neoplastic cells use a wide range of adaptive mechanisms to form and maintain resistance against antitumor agents, which makes it urgent to identify promising therapies to solve this problem. Hydroxamic acids are biologically active compounds and in recent years have been actively considered to be potentially promising drugs of various pharmacological applications.
View Article and Find Full Text PDFNovel monoterpene-based hydroxamic acids of two structural types were synthesized for the first time. The first type consisted of compounds with a hydroxamate group directly bound to acyclic, monocyclic and bicyclic monoterpene scaffolds. The second type included hydroxamic acids connected with the monoterpene moiety through aliphatic (hexa/heptamethylene) or aromatic linkers.
View Article and Find Full Text PDFUnlabelled: Alzheimer's disease (AD) is a neurodegenerative disease associated with memory impairment and other central nervous system (CNS) symptoms. Two myrtenal-adamantane conjugates (MACs) showed excellent CNS potential against Alzheimer's models. Adamantane is a common pharmacophore for drug design, and myrtenal (M) demonstrated neuroprotective effects in our previous studies.
View Article and Find Full Text PDFInhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives - and - showed activity against TDP1 at a low micromolar range with IC ~5-6 μM, whereas camphor-containing compounds and were ineffective.
View Article and Find Full Text PDFA number of new chiral bispidines containing monoterpenoid fragments have been obtained. The bispidines were studied as ligands for Ni-catalyzed addition of diethylzinc to chalcones. The conditions for chromatographic analysis by HPLC-UV were developed, in which the peaks of the enantiomers of all synthesized chiral products were separated, which made it possible to determine the enantiomeric excess of the resulting mixture.
View Article and Find Full Text PDFHydroxamic acids are one of the most promising and actively studied classes of chemical compounds in medicinal chemistry. In this study, we describe the directed synthesis and effects of HDAC6 inhibitors. Fragments of adamantane and natural terpenes camphane and fenchane, combined with linkers of various nature with an amide group, were used as the CAP groups.
View Article and Find Full Text PDFTyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising target for anticancer therapy due to its ability to counter the effects topoisomerase 1 (Top1) poison, such as topotecan, thus, decreasing their efficacy. Compounds containing adamantane and monoterpenoid residues connected via 1,2,4-triazole or 1,3,4-thiadiazole linkers were synthesized and tested against Tdp1. All the derivatives exhibited inhibition at low micromolar or nanomolar concentrations with the most potent inhibitors having IC values in the 0.
View Article and Find Full Text PDF