The high incidence of irreproducible research has led to urgent appeals for transparency and equitable practices in open science. For the scientific disciplines that rely on computationally intensive analyses of large datasets, a granular understanding of the analysis methodology is an essential component of reproducibility. This article discusses the guiding principles of a computational reproducibility framework that enables a scientist to proactively generate a complete reproducible trace as analysis unfolds, and share data, methods and executable tools as part of a scientific publication, allowing other researchers to verify results and easily re-execute the steps of the scientific investigation.
View Article and Find Full Text PDF