Background: The adoption of whole-genome sequencing in genetic screens has facilitated the detection of genetic variation in the intronic regions of genes, far from annotated splice sites. However, selecting an appropriate computational tool to discriminate functionally relevant genetic variants from those with no effect is challenging, particularly for deep intronic regions where independent benchmarks are scarce.
Results: In this study, we have provided an overview of the computational methods available and the extent to which they can be used to analyze deep intronic variation.
Hypertrophic cardiomyopathy (HCM) is a common heart disease associated with sudden cardiac death. Early diagnosis is critical to identify patients who may benefit from implantable cardioverter defibrillator therapy. Although genetic testing is an integral part of the clinical evaluation and management of patients with HCM and their families, in many cases the genetic analysis fails to identify a disease-causing mutation.
View Article and Find Full Text PDF