Publications by authors named "Alburges M"

Administration of methamphetamine (METH) alters limbic-related (LR) neurotensin (NT) systems. Thus, through a D1-receptor mechanism, noncontingent high doses (5-15 mg kg(-1)), and likely self-administration, of METH appears to reduce NT release causing its accumulation and an elevation of NT-like immunoreactivity (NTLI) in limbic-related NT pathways. For comparison, we tested the effect of low doses of METH, that are more like those used in therapy, on NTLI in the core and shell of the nucleus accumbens (NAc and NAs), prefrontal cortex (PFC), ventral tegmental area (VTA), the lateral habenula (Hb) and basolateral amygdala (Amyg).

View Article and Find Full Text PDF

Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use.

View Article and Find Full Text PDF

Rationale: Administration of high doses of methamphetamine (METH) in a manner mimicking the binging patterns associated with abuse reduces NT release and causes its accumulation and elevated NT levels in extrapyramidal structures by a D1 mechanism. The relevance of these findings to the therapeutic use of METH needs to be studied.

Objectives: The effect of low doses (comparable to that used for therapy) of METH on basal ganglia NT systems was examined and compared to high-dose and self-administration effects previously reported.

View Article and Find Full Text PDF

Because of persistent social problems caused by methamphetamine (METH), new therapeutic strategies need to be developed. Thus, we investigated the response of central nervous system neurotensin (NT) systems to METH self-administration (SA) and their interaction with basal ganglia dopamine (DA) pathways. Neurotensin is a peptide associated with inhibitory feedback pathways to nigrostriatal DA projections.

View Article and Find Full Text PDF

Methamphetamine (METH) abuse is personally and socially devastating. Although effects of METH on dopamine (DA) systems likely contribute to its highly addictive nature, no medications are approved to treat METH dependence. Thus, we and others have studied the METH-induced responses of neurotensin (NT) systems.

View Article and Find Full Text PDF

Methylphenidate (MPD) is a psychostimulant widely used to treat behavioral problems such as attention deficit hyperactivity disorder. MPD competitively inhibits the dopamine (DA) transporter. Previous studies demonstrated that stimulants of abuse, such as cocaine (COC) and methamphetamine differentially alter rat brain neurotensin (NT) systems through DA mechanisms.

View Article and Find Full Text PDF

Administration of high doses of methamphetamine (METH) causes persistent dopaminergic deficits in both nonhuman preclinical models and METH-dependent persons. Noteworthy, adolescent [i.e.

View Article and Find Full Text PDF

Methamphetamine (METH) dependence causes alarming personal and social damage. Even though many of the problems associated with abuse of METH are related to its profound actions on dopamine (DA) basal ganglia systems, there currently are no approved medications to treat METH addiction. For this reason, we and others have examined the METH-induced responses of neurotensin (NT) systems in the basal ganglia.

View Article and Find Full Text PDF

Rationale: Neuropeptides are linked to the psychopathology of stimulants of abuse, principally through dopamine mechanisms. Substance P (SP) is one of these neuropeptides and is associated with both limbic and extrapyramidal dopaminergic pathways and likely contributes to the pharmacology of these stimulants. The effects of nicotine on these dopamine systems have also been extensively studied; however, its effects on the associated SP pathways have received little attention.

View Article and Find Full Text PDF

Interest in development of therapeutics targeting brain neuropeptide systems for treatment of cocaine addiction (e.g., kappa opioid agonists) is based on animal data showing interactions between the neuropeptides, brain dopamine, and cocaine.

View Article and Find Full Text PDF

Neuropeptides have been implicated in the psychopathology of stimulants of abuse. Neurotensin is a neuropeptide associated with the regulation of the nigrostriatal and mesolimbic dopamine pathways. In addition, the ventral tegmental area, a midbrain region implicated in the rewarding effects of most, if not all, addictive drugs, appears to be a particularly critical target for nicotine action.

View Article and Find Full Text PDF

Animal data show that neuropeptide systems in the dopamine-rich brain areas of the striatum (caudate, putamen, and nucleus accumbens) are influenced by exposure to psychostimulants, suggesting that neuropeptides are involved in mediating aspects of behavioral responses to drugs of abuse. To establish in an exploratory study whether levels of neuropeptides are altered in brain of human methamphetamine users, we measured tissue concentrations of dynorphin, metenkephalin, neuropeptide Y, neurotensin, and substance P in autopsied brains of 16 chronic methamphetamine users and 17 matched control subjects. As expected, levels of most neuropeptides were enriched in dopamine-linked brain regions such as the nucleus accumbens and striatum of normal human brain.

View Article and Find Full Text PDF

Neurotensin is a neuropeptide associated with basal ganglia dopaminergic neurons. Because levels of neurotensin in striatal tissue are differentially affected by low or high doses of methamphetamine, we employed microdialysis to assess the dose-dependent effects of methamphetamine on neurotensin release from the terminals of striatonigral and striatopallidal neurons. A low (0.

View Article and Find Full Text PDF

Substance P (SP) is a neuropeptide closely associated with basal ganglia dopaminergic neurons. Because some neuropeptide systems in the basal ganglia (i.e.

View Article and Find Full Text PDF

Mated Crl:CD VAF/Plus female rats, in a range-finding study (n = 5-6 per dose) and a subsequent definitive study (n = 30 per dose) were used to determine the developmental toxicity, including the teratogenic potential of levo-alpha-acetylmethadol (LAAM) hydrochloride, in tolerant rats. Tolerance was induced by initially administering the drug by gavage (10 ml/kg) at 2 mg/kg/day and increasing the dose every 2 weeks for 12 weeks until the doses of 2, 6, 9, 12, and 15, or 2, 6, and 12 mg/kg/day were achieved in the range-finding or definitive study, respectively. Females were then mated to stock males and treated throughout mating and gestation.

View Article and Find Full Text PDF

A single administration of a low (0.5 mg/kg) or high (10 mg/kg) dose of methamphetamine (METH) significantly altered the met-enkephalin (M-Enk) systems associated with some, but not all, limbic structures examined. Neither treatment influenced M-Enk levels 3 h after drug exposure in any limbic region studied; however, 12 h after drug administration, 0.

View Article and Find Full Text PDF

The influence of methamphetamine (METH) on basal ganglia met-enkephalin (Menk) was studied by determining levels of this peptide in striatal, pallidal and nigral regions after administering a single low (0.5 mg/kg) or high (10 mg/kg) dose of this stimulant. The Menk levels in the striatal and pallidal areas were reduced and increased after the low- and high-dose METH treatments, respectively, 12 h after drug administration in all striatal and pallidal regions examined.

View Article and Find Full Text PDF

Ibogaine is an indolamine found in the West Africa shrub, Tabernanthe iboga, and has been proposed for the treatment of addiction to central nervous system (CNS) stimulants such as cocaine and amphetamine. The mechanism of ibogaine action and its suitability as a treatment for drug addiction still remains unclear. Since previous studies demonstrated differential effects of stimulants of abuse (amphetamines) on neuropeptide systems such as substance P, we examined the impact of ibogaine and cocaine on extrapyramidal (striatum and substantia nigra) and limbic (nucleus accumbens and frontal cortex) substance P-like immunoreactivity.

View Article and Find Full Text PDF

Ibogaine (Endabuse) is a psychoactive indole alkaloid found in the shrub, Tabernanthe iboga, which has been used to treat stimulant addiction. Because ibogaine influences the activity of neurotensin systems, a dopamine-linked neuropeptide, the present study investigated if ibogaine also influences dynorphin (DYN) pathways. Unlike neurotensin responses, ibogaine alone did not alter DYN levels in the striatum, substantia nigra or nucleus accumbens.

View Article and Find Full Text PDF

We investigated the role of the protein phosphatase inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), in the expression of striatal neuropeptides and in biochemical and behavioural responses to repeated cocaine administration, using DARPP-32 knock-out mice. The striatum of DARPP-32-mutant mice showed heightened substance-P-like immunoreactivity, but normal levels of other neuropeptides. Repeated cocaine administration increased levels of DeltaFosB, a Fos family transcription factor, in the striatum of wild-type mice, and this increase was abolished in DARPP-32-mutant mice.

View Article and Find Full Text PDF

Ibogaine (Endabuse) is a psychoactive indole alkaloid found in the West African shrub, Tabernanthe iboga. This drug interrupts cocaine and amphetamine abuse and has been proposed for treatment of addiction to these stimulants. However, the mechanism of action that explains its pharmacological properties is unclear.

View Article and Find Full Text PDF

The N-demethylation of LAAM, norLAAM, and methadone has been investigated in human liver microsomes and microsomes containing cDNA-expressed human P450s. Gas chromatography/mass spectrometry methods allowed detection of norLAAM and dinorLAAM formation from LAAM, dinorLAAM formation from norLAAM, and EDDP and EMDP formation from methadone. The rates of N-demethylation varied 4- to 7-fold in microsomes from four different donors with activities for LAAM and norLAAM consistently greater (5- to 14-fold) than for methadone.

View Article and Find Full Text PDF

Methadone is often invoked for detoxification and maintenance of the opioid addict. We have developed and validated a sensitive and specific method for the analysis of methadone and its metabolites, 2-ethylidene-1,5-dimethyl-3, 3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenylpyrroline (EMDP), in human plasma, urine, and liver microsomes. This assay uses a solid-phase extraction.

View Article and Find Full Text PDF

In previous studies, we reported time-dependent and dose-dependent changes in the rat dopaminergic receptor system following chronic administration of cocaine. The aim of the present investigation was to monitor the concentration of monoamines (using HPLC-ECD) and cocaine (using GC-PCI/MS) in rat CNS following a dose schedule of 5, 10, 15, 20 and 25 mg/kg, i.p.

View Article and Find Full Text PDF

Ibogaine, an indolamine derivative, is currently being investigated as a potential agent in the treatment of stimulant and opiate addiction. We developed a rapid, sensitive, and specific method for the analysis of ibogaine and its putative active metabolite, 12-hydroxy-ibogamine (12-OH-ibogamine). This assay employs a one-step basic extraction with n-butyl chloride-acetonitrile (4:1), followed by derivatization of the metabolite using N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide.

View Article and Find Full Text PDF