This review focuses on current clinical and immunological aspects of cerebral malaria induced by infection. Albeit many issues concerning the inflammatory responses remain unresolved and need further investigations, current knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in the light of significant limitations in preventative diagnosis and treatment of cerebral malaria, this review mainly discusses our understanding of immune mechanisms in the light of the most recent research findings.
View Article and Find Full Text PDFThis multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats ("blood pool imaging"). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application.
View Article and Find Full Text PDFGenome-wide association studies as well as lymphatic expression analyses have linked both Cbl-b and GM-CSF to human multiple sclerosis as well as other autoimmune diseases. Both Cbl-b and GM-CSF have been shown to play a prominent role in the development of murine encephalomyelitis; however, no functional connection between the two has yet been established. In this study, we show that knockout mice demonstrated significantly exacerbated severity of experimental autoimmune encephalomyelitis (EAE), augmented T cell infiltration into the central nervous system (CNS) and strongly increased production of GM-CSF in T cells and .
View Article and Find Full Text PDFThe pathogenesis of diabetic neuropathy remains enigmatic. Damage to the vasa nervorum may be responsible for this disorder. Recently, we showed that secretoneurin (SN) induces angiogenesis in hindlimb and myocardial ischemia.
View Article and Find Full Text PDFThe BCR/ABL1 inhibitor Nilotinib is increasingly used to treat patients with chronic myeloid leukemia (CML). Although otherwise well-tolerated, Nilotinib has been associated with the occurrence of progressive arterial occlusive disease (AOD). Our objective was to determine the exact frequency of AOD and examine in vitro and in vivo effects of Nilotinib and Imatinib on endothelial cells to explain AOD-development.
View Article and Find Full Text PDFCommon therapeutic strategies for peripheral arterial disease often fail to re-establish sufficient blood flow within legs and feet of patients for avoiding critical limb ischemia, what is characterized by a substantial risk for amputation. The neuropeptide secretoneurin induces angiogenesis in models of limb and myocardial ischemia and might be a promising tool in the treatment of patients without the option of revascularization therapy for severe ischemia. Within this manuscript, the biologically active part of secretoneurin was identified, modified by induction of a cysteine residue to gain higher stability against enzymatic degradation and further packed into S-protected thiolated chitosan nanoparticles, which enable intra-muscular application of secretoneurin.
View Article and Find Full Text PDFBackground: The serine/threonine protein kinase C (PKC) theta has been firmly implicated in T cell-mediated immunity. Because its role in macrophages has remained undefined, we employed PKCtheta-deficient (PKCtheta (-/-)) mice in order to investigate if PKCtheta plays a role in macrophage-mediated immune responses during bacterial infections.
Results: Our results demonstrate that PKCtheta plays an important role in host defense against the Gram-negative, intracellular bacterium Salmonella typhimurium, as reflected both by markedly decreased survival and a significantly enhanced number of bacteria in spleen and liver of PKCtheta (-/-) mice, when compared to wild-type mice.
Aims: Shock wave therapy (SWT) represents a clinically widely used angiogenic and thus regenerative approach for the treatment of ischaemic heart or limb disease. Despite promising results in preclinical and clinical trials, the exact mechanism of action remains unknown. Toll-like receptor 3, which is part of the innate immunity, is activated by binding double-stranded (ds) RNA.
View Article and Find Full Text PDFAims: Hypercholesterolaemia is a major risk factor for cardiovascular diseases and has been shown to influence angiogenesis in the hind limb ischaemia (HLI) model. The impaired up-regulation of angiogenic factors seems to be one of the underlying mechanisms for reduced vessel formation. Since we found that secretoneurin (SN) is up-regulated in hypoxic skeletal muscle cells and exerts beneficial effects in myocardial and HLI, we hypothesized that SN therapy might improve neovascularization in hypercholesterolaemic Apo E(-/-) (Apo E knockout) mice suffering from an impaired vascular response.
View Article and Find Full Text PDFPreviously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.
View Article and Find Full Text PDFDeficient angiogenesis after ischemia may contribute to worse outcome of peripheral arterial disease in patients with diabetes mellitus. Based on our previous work where we demonstrated that Secretoneurin (SN) is up-regulated under hypoxic conditions and enhances angiogenesis, we analyzed the therapeutic potential of SN gene therapy using a model of severe hind limb ischemia in streptozotocin-induced diabetic mice (STZ-DM). After induction of hind limb ischemia, blood flow was assessed by means of laser Doppler perfusion imaging (LDPI) and increased blood perfusion in the SN-treated animal group was observed.
View Article and Find Full Text PDFDiabetic foot ulcers represent a therapeutic problem of high clinical relevance. Reduced vascular supply, neuropathy and diminished expression of growth factors strongly contribute to wound healing impairment in diabetes. Secretoneurin, an angiogenic neuropeptide, has been shown to improve tissue perfusion in different animal models by increasing the amount of vessels in affected areas.
View Article and Find Full Text PDFObjectives: Shock waves have been shown to induce recruitment of intravenously injected endothelial progenitor cells to ischemic hind limbs in rats. We hypothesized that shock wave treatment as sole therapy would induce angiogenesis in this ischemia model and would lead to mobilization of endogenous endothelial (progenitor) cells.
Methods: A total of 18 rats, aged 5 weeks old, were subdivided into 3 groups: sham (n = 6), ischemic muscle with shock wave treatment (shock wave treatment group, n = 6), and without shock wave treatment (control, n = 6).
Background: Secretoneurin is a neuropeptide located in nerve fibers along blood vessels, is upregulated by hypoxia, and induces angiogenesis. We tested the hypothesis that secretoneurin gene therapy exerts beneficial effects in a rat model of myocardial infarction and evaluated the mechanism of action on coronary endothelial cells.
Methods And Results: In vivo secretoneurin improved left ventricular function, inhibited remodeling, and reduced scar formation.