Publications by authors named "Albrecht Stroh"

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects.

View Article and Find Full Text PDF

Summary: Segmentation of neural somata is a crucial and usually the most time-consuming step in the analysis of optical functional imaging of neuronal microcircuits. In recent years, multiple auto-segmentation tools have been developed to improve the speed and consistency of the segmentation process, mostly, using deep learning approaches. Current segmentation tools, while advanced, still encounter challenges in producing accurate segmentation results, especially in datasets with a low signal-to-noise ratio.

View Article and Find Full Text PDF

Neuronal networks possess the ability to regulate their activity states in response to disruptions. How and when neuronal networks turn from physiological into pathological states, leading to the manifestation of neuropsychiatric disorders, remains largely unknown. Here, we propose that neuronal networks intrinsically maintain network stability even at the cost of neuronal loss.

View Article and Find Full Text PDF

To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.

View Article and Find Full Text PDF

The primary cilium is an organelle with a central role in cellular signal perception. Mutations in genes that encode cilia-associated proteins result in a collection of human syndromes collectively termed ciliopathies. Of these, the Bardet-Biedl syndrome (BBS) is considered one of the archetypical ciliopathies, as patients exhibit virtually all respective clinical phenotypes, such as pathological changes of the retina or the kidney.

View Article and Find Full Text PDF

Inhibitory interneurons play central roles in the modulation of spontaneous network activity and in processing of neuronal information. In sensory neocortical areas, parvalbumin-positive (PV+) GABAergic interneurons control the representation and processing of peripheral sensory inputs. We studied the functional role of PV+ interneurons in the barrel cortex of anesthetized adult PVCre mice by combining extracellular multi-electrode recordings with optogenetic silencing of a small fraction of PV+ interneurons.

View Article and Find Full Text PDF

Spontaneous electrical activity plays major roles in the development of cortical circuitry. This activity can occur highly localized regions or can propagate over the entire cortex. Both types of activity coexist during early development.

View Article and Find Full Text PDF
Article Synopsis
  • The spatiotemporal representation of neural activity is influenced primarily by cortical state, fluctuating between persistent activity (PA) and slow wave activity (SWA) based on varying conditions and sedatives.
  • Neurophysiological experiments reveal that the variability of neuronal responses often contradicts the assumption of a constant underlying state, impacting how sensory stimuli are processed in the cortex.
  • Our findings indicate that sensory responses in the PA state are quick and consistent, while responses during SWA are more erratic and depend on prior activity, highlighting the importance of understanding these states for interpreting experimental results.
View Article and Find Full Text PDF

Due to the vascular origin of the fMRI signal, the spatiotemporally precise interpretation of the blood oxygen level-dependent (BOLD) response as brain-wide correlate of neuronal activity is limited. Optical fiber-based neuronal calcium recordings provide a specific and temporally highly resolved signal yet lacking brain-wide coverage. The cross-modal integration of both modalities holds the potential for unique synergies.

View Article and Find Full Text PDF
Article Synopsis
  • The paper presents a method for generating personalized CT images while evaluating radiation exposure and assessing lifetime attributable risk (LAR).
  • It examines various denoising algorithms, including advanced deep learning methods and wavelet techniques, focusing on their effectiveness in minimizing LAR and their computational efficiency.
  • The proposed parallel Probabilistic Mumford−Shah denoising model significantly outperforms traditional methods, providing up to a 22-fold reduction in LAR for infants and a 10-fold reduction for adults, all while being accessible on a standard laptop and accommodating large 2D and 3D images.
View Article and Find Full Text PDF

Background: Modulation of pathological neural circuit activity in the brain with a minimum of complications is an area of intense interest.

Objective: The goal of the study was to alter neurons' physiological states without apparent damage of cellular integrity using stereotactic radiosurgery (SRS).

Methods: We treated a 7.

View Article and Find Full Text PDF

The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs). Recently, the relationship between SWEs and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic signature corresponds to these specific neurophysiological events in the human brain.

View Article and Find Full Text PDF

2-photon all-optical physiology combines 2-photon calcium imaging and optogenetics, which enables both the read out and manipulation of neuronal microcircuits with single-cell resolution. Here, we describe a protocol for achieving optimized co-expression of calcium indicator and opsin. To enable longitudinal designs, we introduce a template for virus injection and chronic window implantation.

View Article and Find Full Text PDF

T helper (Th)17 cells are considered to contribute to inflammatory mechanisms in diseases such as multiple sclerosis (MS). However, the discussion persists regarding their true role in patients. Here, we visualized central nervous system (CNS) inflammatory processes in models of MS live in vivo and in MS brains and discovered that CNS-infiltrating Th17 cells form prolonged stable contact with oligodendrocytes.

View Article and Find Full Text PDF

Aberrant activity of local functional networks underlies memory and cognition deficits in Alzheimer's disease (AD). Hyperactivity was observed in microcircuits of mice AD-models showing plaques, and also recently in early stage AD mutants prior to amyloid deposition. However, early functional effects of AD on cortical microcircuits remain unresolved.

View Article and Find Full Text PDF

Two-photon (2-P) all-optical approaches combine 2-P calcium imaging and 2-P optogenetic modulations. Here, firstly, we combined juxtacellular recordings and GCaMP6f-based 2-P calcium imaging in mouse visual cortex to tune our detection algorithm towards a 100% specific identification of action potential-related calcium transients. Secondly, we minimized photostimulation artifacts by using extended-wavelength-spectrum laser sources for optogenetic stimulation.

View Article and Find Full Text PDF

Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure.

View Article and Find Full Text PDF

The tsunami effect of the COVID-19 pandemic is affecting many aspects of scientific activities. Multidisciplinary experimental studies with international collaborators are hindered by the closing of the national borders, logistic issues due to lockdown, quarantine restrictions, and social distancing requirements. The full impact of this crisis on science is not clear yet, but the above-mentioned issues have most certainly restrained academic research activities.

View Article and Find Full Text PDF

Previously, using simultaneous resting-state functional magnetic resonance imaging (fMRI) and photometry-based neuronal calcium recordings in the anesthetized rat, we identified blood oxygenation level-dependent (BOLD) responses directly related to slow calcium waves, revealing a cortex-wide and spatially organized correlate of locally recorded neuronal activity (Schwalm et al., 2017). Here, using the same techniques, we investigate two distinct cortical activity states: persistent activity, in which compartmentalized network dynamics were observed; and slow wave activity, dominated by a cortex-wide BOLD component, suggesting a strong functional coupling of inter-cortical activity.

View Article and Find Full Text PDF

To study the role of myeloid cells in the central nervous system (CNS) in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), we used intravital microscopy, assessing local cellular interactions in vivo in EAE animals and ex vivo in organotypic hippocampal slice cultures. We discovered that myeloid cells actively engulf invading living Th17 lymphocytes, a process mediated by expression of activation-dependent lectin and its T cell-binding partner, N-acetyl-D-glucosamine (GlcNAc). Stable engulfment resulted in the death of the engulfed cells, and, remarkably, enhancement of GlcNAc exposure on T cells in the CNS ameliorated clinical EAE symptoms.

View Article and Find Full Text PDF

Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) provides a unique tool for visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.

View Article and Find Full Text PDF

Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context.

View Article and Find Full Text PDF

Dopamine dysfunction is associated with a wide range of neuropsychiatric disorders commonly treated pharmacologically or invasively. Recent studies provide evidence for a nonpharmacological and noninvasive alternative that allows similar manipulation of the dopaminergic system: transcranial direct current stimulation (tDCS). In rodents, tDCS has been shown to increase neural activity in subcortical parts of the dopaminergic system, and recent studies in humans provide evidence that tDCS over prefrontal regions induces striatal dopamine release and affects reward-related behavior.

View Article and Find Full Text PDF