Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake.
View Article and Find Full Text PDFIn experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation.
View Article and Find Full Text PDFBackground: The consumption of large amounts of dietary fats activates an inflammatory response in the hypothalamus, damaging key neurons involved in the regulation of caloric intake and energy expenditure. It is currently unknown why the mediobasal hypothalamus is the main target of diet-induced brain inflammation. We hypothesized that dietary fats can damage the median eminence blood/spinal fluid interface.
View Article and Find Full Text PDFBackground: The consumption of large amounts of dietary fats can trigger an inflammatory response in the hypothalamus and contribute to the dysfunctional control of caloric intake and energy expenditure commonly present in obesity. The objective of this study was to identify chemokine-related transcripts that could be involved in the early stages of diet-induced hypothalamic inflammation.
Methods: We used immunoblot, PCR array, real-time PCR, immunofluorescence staining, glucose and insulin tolerance tests, and determination of general metabolic parameters to evaluate markers of inflammation, body mass variation, and glucose tolerance in mice fed a high-fat diet.
Background: The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity.
View Article and Find Full Text PDFBackground: Diet-induced hypothalamic inflammation is an important mechanism leading to dysfunction of neurons involved in controlling body mass. Studies have shown that polyunsaturated fats can reduce hypothalamic inflammation. Here, we evaluated the presence and function of RvD2, a resolvin produced from docosahexaenoic acid, in the hypothalamus of mice.
View Article and Find Full Text PDF