A methodology based on molecular dynamics simulations is presented to determine the chemical potential of thiol self-assembled monolayers on a gold surface. The thiol de-solvation and then the monolayer formation are described by thermodynamic integration with a gradual decoupling of one molecule from the environment, with the necessary corrections to account for standard state changes. The procedure is applied both to physisorbed undissociated thiol molecules and to chemisorbed dissociated thiyl radicals, considering in the latter case the possible chemical potential of the produced hydrogen.
View Article and Find Full Text PDFWe derive equations of motion for bivariational wave functions with orthogonal adaptive basis sets and specialize the formalism to the coupled cluster Ansatz. The equations are related to the biorthogonal case in a transparent way, and similarities and differences are analyzed. We show that the amplitude equations are identical in the orthogonal and biorthogonal formalisms, while the linear equations that determine the basis set time evolution differ by symmetrization.
View Article and Find Full Text PDFThe computation of the nuclear quantum dynamics of molecules is challenging, requiring both accuracy and efficiency to be applicable to systems of interest. Recently, theories have been developed for employing time-dependent basis functions (denoted modals) with vibrational coupled cluster theory (TDMVCC). The TDMVCC method was introduced along with a pilot implementation, which illustrated good accuracy in benchmark computations.
View Article and Find Full Text PDFWe present equations of motion (EOMs) for general time-dependent wave functions with exponentially parameterized biorthogonal basis sets. The equations are fully bivariational in the sense of the time-dependent bivariational principle and offer an alternative, constraint-free formulation of adaptive basis sets for bivariational wave functions. We simplify the highly non-linear basis set equations using Lie algebraic techniques and show that the computationally intensive parts of the theory are, in fact, identical to those that arise with linearly parameterized basis sets.
View Article and Find Full Text PDFWe derive general bivariational equations of motion (EOMs) for time-dependent wave functions with biorthogonal time-dependent basis sets. The time-dependent basis functions are linearly parameterized and their fully variational time evolution is ensured by solving a set of so-called constraint equations, which we derive for arbitrary wave function expansions. The formalism allows division of the basis set into an active basis and a secondary basis, ensuring a flexible and compact wave function.
View Article and Find Full Text PDFSelf-assembled monolayers (SAM) of 7-mercapto-4-methylcoumarin (MMC) on a flat gold surface were studied by molecular dynamics (MD) simulations, reference-free grazing incidence X-ray fluorescence (GIXRF) and X-ray photoelectron spectroscopy (XPS), to determine the maximum monolayer density and to investigate the nature of the molecule/surface interface. In particular, the protonation state of the sulfur atom upon adsorption was analyzed, since some recent literature presented evidence for physisorbed thiols (preserving the S-H bond), unlike the common picture of chemisorbed thiyls (losing the hydrogen). MD with a specifically tailored force field was used to simulate either thiol or thiyl monolayers with increasing number of molecules, to determine the maximum dynamically stable densities.
View Article and Find Full Text PDFWe develop time-dependent vibrational coupled cluster with time-dependent modals (TDMVCC), where an active set of one-mode basis functions (modals) is evolved in time alongside coupled-cluster wave-function parameters. A biorthogonal second quantization formulation of many-mode dynamics is introduced, allowing separate biorthogonal bases for the bra and ket states, thus ensuring complex analyticity. We employ the time-dependent bivariational principle to derive equations of motion for both the one-mode basis functions and the parameters describing the cluster (T) and linear de-excitation (L) operators.
View Article and Find Full Text PDFWe describe theoretically the structure and properties of layered lead organohalide perovskites, considering purely bi-dimensional (2D) PbI layers, and quasi-2D systems where the inorganic layers are formed by more than one lead iodide sheet. The intercalating organic dications were designed to have low lying virtual orbitals (LUMO), so as to induce in the perovskite the appearance of virtual bands, localized in the organic layer, either close to the inorganic conduction band bottom or valence band top, or in some cases in the middle of the inorganic band gap. Such a feature is quite uncommon for this class of materials, and deserves attention since it allows one to tune the effective band gap of the material, possibly leading to the absorption of visible light and influencing the optical properties deeply.
View Article and Find Full Text PDFEquations are derived for the time evolution of time-dependent vibrational coupled cluster (TDVCC) wave functions covering both the TDVCC ket state and the associated so-called Λ bra state. The equations are implemented in the special case of both the Hamiltonian and the cluster operator containing at most two-mode coupling terms. The nontrivial behavior of the evolution of norm, energy, and expectation values due to the nonunitary time-evolution of the nonvariational TDVCC theory is analyzed theoretically and confirmed in numerical experiments that also include time-dependent Hamiltonians.
View Article and Find Full Text PDFWe derive equations for describing the time evolution of variational wave functions in linear and exponential parameterization with a second-quantization (SQ) formulation. The SQ formalism covers time-dependent Hartree (TDH), while exact states and approximate vibrational configuration interaction wave functions are described using state-transfer operators. We present detailed expressions for efficient evaluation of TDH in linear (L-TDH) and exponential (X-TDH) parametrization and an efficient implementation supporting linear scaling with respect to the number of degrees of freedom when the Hamiltonian operator contains a constant number of terms per mode independently of the size of the system.
View Article and Find Full Text PDFThe vibrational coupled cluster (VCC) equations are analyzed in terms of vibrational Mo̸ller-Plesset perturbation theory aiming specifically at the importance of four-mode couplings. Based on this analysis, new VCC methods are derived for the calculation of anharmonic vibrational energies and vibrational spectra using vibrational coupled cluster response theory. It is shown how the effect of four-mode coupling and excitations can be efficiently and accurately described using approximations for their inclusion.
View Article and Find Full Text PDFIn this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed solving iteratively a single linear set of equations. Sample calculations are presented which show that the resulting algorithm scales only with the third power of the number of modes, therefore making large systems accessible.
View Article and Find Full Text PDFIn this paper we set up a method called overlap decoherence correction (ODC) to take into account the quantum decoherence effect in a surface hopping framework. While keeping the standard surface hopping approach based on independent trajectories, our method allows to account for quantum decoherence by evaluating the overlap between frozen Gaussian wavepackets, the time evolution of which is obtained in an approximate way. The ODC scheme mainly depends on the parameter σ, which is the Gaussian width of the wavepackets.
View Article and Find Full Text PDF