Publications by authors named "Alberto Vita"

Cytidine deaminase (CDA), is one of the enzymes involved in the pyrimidine salvage pathways, which catalyzes the formation of uridine and deoxyuridine by the hydrolytic deamination of cytidine and deoxycytidine, respectively. Human CDA is a tetrameric enzyme of identical 15 kDa subunits, each containing an essential zinc atom in the active site. The substrate binds to each active site independently and the cooperativity between subunits has not been reported.

View Article and Find Full Text PDF

Background: The CDA 79A>C (K27Q, rs2072671) functional SNP has recently shown a crucial role in the pharmacogenetics of cytidine-based anticancer drugs widely administered to different subsets of patients. Current gold standard in screening for the CDA rs2072671 is the sequence-based genotyping method. Here we developed a novel, rapid Allele-Specific PCR method for CDA rs2072671 genotyping.

View Article and Find Full Text PDF

In the present work the effect of a mutation on tyrosine 33 residue (Y33G) of human cytidine deaminase (CDA) was investigated with regard to protein solubility and specific activity. Osmolytes and CDA ligands were used to increase the yield and the specific activity of the protein. The mutant enzyme was purified and subjected to a kinetic characterization and to stability studies.

View Article and Find Full Text PDF

Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that catalyzes the hydrolytic deamination of cytidine and deoxycytidine to their corresponding uracil nucleosides. CDA also catalyzes the inactivation of some chemotherapeutic nucleoside analogues such as cytosine arabinoside and gemcitabine. CDA 79A > C (K27Q, rs2072671) and 208G > A (A70T, rs60369023) were found to be associated either with clinical outcomes as well as with pharmacokinetics and toxicity of drugs administered to different subsets of patients.

View Article and Find Full Text PDF

We report the kinetics and molecular properties of CD38 purified from bovine lung microsomal membranes after its solubilization with Triton X-100. The enzyme was found to be a novel member of a multicatalytic NAD(+)-glycohydrolase (NADase, EC 3.2.

View Article and Find Full Text PDF

Cytidine deaminase (CDA) is a cytosolic metalloprotein whose functional unit can be either a homotetramer (T-CDA) or a homodimer (D-CDA), depending on the species. In 1994, the first crystal structure of the dimeric Escherichia coli CDA has been published. However, a crystal structure of a tetrameric CDA was not determined until 2002.

View Article and Find Full Text PDF

An intersubunit interactions study related to the active site has been performed on the wild-type cytidine deaminase (CDA) and on the mutant enzyme F137W/W113F. F137 is the homologous to the Bacillus subtilis CDA F125 involved in the subunit interactions. In the presence of SDS, wild-type human CDA dissociates into enzymatically inactive monomers without intermediate forms via a non-cooperative transition.

View Article and Find Full Text PDF

N6-Cycloalkyl-2',3'-dideoxyadenosine derivatives and (2-chloro)-N6-cycloheptyl-3-deazaadenosine have been synthesized and tested, along with other (deaza)purine (deoxy)nucleosides from our chemical library, as inhibitors of virus replication against Bovine Herpes Virus 1 (BHV-1) and sheep Maedi/Visna Virus (MVV). Most compounds demonstrated good antireplicative activity against MVV, showing also low cell toxicity.

View Article and Find Full Text PDF

A series of N(6)-cycloalkyl-2',3'-dideoxyadenosine derivatives has been prepared by coupling of 2,6-dichloropurine to protected 2,3-dideoxyribose, followed by reaction with appropriate cycloalkylamines. Synthesized compounds, along with other purine nucleoside analogues previously synthesized in our laboratory, have been tested for their antiviral activity against Bovine herpesvirus 1 (BHV-1) and sheep Maedi/Visna Virus (MVV), the latter being an in vitro and in vivo model of Human Immunodeficiency Virus (HIV). All compounds showed good antireplicative activity against MVV, with the N(6)-cycloheptyl-2',3'-dideoxyadenosine (5b) being the most active [effective concentration (EC(50)) causing 50% reduction of cytopatic effects (CPE)=27 nM].

View Article and Find Full Text PDF