This article presents a new model of optical power gathered by a fiber-optic pyrometer when there is a tilting angle between the fiber longitudinal axis and the vector perpendicular to the tangent plane of the emitted surface. This optical power depends on the fiber specifications, such as the diameter and the numerical aperture (NA), as well as the object parameters, including its diameter, emissivity, and tilting angle. Some simulations are carried out using other pyrometers from the literature without tilting to validate the model.
View Article and Find Full Text PDFTaking non-contact temperature measurements in narrow areas or confined spaces of non-uniform surfaces requires high spatial resolution and independence of emissivity uncertainties that conventional cameras can hardly provide. Two-color optical fiber (OF) pyrometers based on standard single-mode (SMF) and multi-mode optical fibers (MMF) with a small core diameter and low numerical aperture in combination with associated commercially available components can provide a spatial resolution in the micrometer range, independent of the material's emissivity. Our experiment involved using a patterned microheater to generate temperatures of approximately 340 °C on objects with a diameter of 0.
View Article and Find Full Text PDFThe understanding of earthquake physics is hindered by the poor knowledge of fault strength and temperature evolution during seismic slip. Experiments reproducing seismic velocity (∼1 m/s) allow us to measure both the evolution of fault strength and the associated temperature increase due to frictional heating. However, temperature measurements were performed with techniques having insufficient spatial and temporal resolution.
View Article and Find Full Text PDFThe cleaving of a novel microstructured polymer optical fiber (mPOF) to obtain an acceptable connectorized fiber end-face is studied. The effect of the blade temperature and the speed of the cutting blade on the end-face is qualitatively assessed. Recently manufactured mPOFs with air-structured 3- and 4-ring hexagonal-like hole cladding structures with outer fiber diameters of around 250 μm are employed.
View Article and Find Full Text PDFThe modelling of temperature measurements using optical fiber pyrometers for different hot object sizes with new generalized integration limits is presented. The closed equations for the calculus of the radiated power that is coupled to the optical fiber for two specific scenarios are proposed. Accurate predictions of critical distance for avoiding errors in the optical fiber end location depending on fiber types and object sizes for guiding good designs are reported.
View Article and Find Full Text PDFPhotonic crystal fibers (PCFs) are a special class of optical fibers with a periodic arrangement of microstructured holes located in the fiber's cladding. Light confinement is achieved by means of either index-guiding, or the photonic bandgap effect in a low-index core. Ever since PCFs were first demonstrated in 1995, their special characteristics, such as potentially high birefringence, very small or high nonlinearity, low propagation losses, and controllable dispersion parameters, have rendered them unique for many applications, such as sensors, high-power pulse transmission, and biomedical studies.
View Article and Find Full Text PDFWe report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.
View Article and Find Full Text PDFThermal issues are critical when machining Ni-based superalloy components designed for high temperature applications. The low thermal conductivity and extreme strain hardening of this family of materials results in elevated temperatures around the cutting area. This elevated temperature could lead to machining-induced damage such as phase changes and residual stresses, resulting in reduced service life of the component.
View Article and Find Full Text PDF