Publications by authors named "Alberto Schiraldi"

The paper is the translation of the previously proposed growth model in a thermodynamic balance of the Gibbs free energy of the system (medium + microbes), based on a simple scheme of the cell duplication. In each duplication step, the cells garner a small extra Gibbs energy from the surrounding medium that loses also some energy through an exothermic effect. It turns out that the each duplication step implies an increase of the entropy of the system, but a decrease of the entropy of the involved cells.

View Article and Find Full Text PDF

A simple kinetic model allowed for the description of the observed decay of the oxygen content in hypoxic aqueous samples with and without headspace, in the presence of glucose oxidase (Glucox) or laccase and their substrates (glucose for Glucox and ABTS for Laccase). The experimental tests involved both the direct measurement of the oxygen content with a fluorescence-based probe and the indirect stopped-flow spectroscopic detection of colored compounds generated from suitable chromogenic reagents. The complete depletion of dissolved oxygen occurred in the no-headspace samples, whereas some residual oxygen remained in a steady state in the samples with headspace.

View Article and Find Full Text PDF

Aims: The two-parameter (α and β) Schiraldi's model reliably fits growth curves of psychrotrophic pathogens and suggests a different description of the latency phase.

Methods And Results: Data obtained at various temperatures and different starting cell densities for Aeromonas hydrophila, Listeria monocytogenes and Yersinia enterocolitica have been fitted with the Baranyi and Roberts' model and the new one. On average, the former showed higher standard error and R values (0.

View Article and Find Full Text PDF

The paper shows that the phenomenological trends of both growth and decay of a microbial population in a given medium are easily reproducible with simple equations that allow gathering the experimental data (plate counts) related to different microbial species, in different mediums and even at different temperatures, in a single master plot. The guideline of the proposed approach is that microbes and surrounding medium form a system where they affect each other and that the so-called "growth curve" is just the phenomenological appearance of such interaction. The whole system (cells and medium) changes following a definite pathway described as the evolution of a "virtual" microbial population in planktonic conditions.

View Article and Find Full Text PDF

seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans.

View Article and Find Full Text PDF

The release of the anticancer drug doxorubicin (DOX) incorporated in a new drug carrier, namely a chimeric nanosystem formed by liposomes and dendrimers, was studied following the influence of the drug on the growth kinetics of the Lactobacillus helveticus bacterium, that would mimic the intestinal microflora. The bacterial growth was followed at 37°C by means of Isothermal Titration Calorimetry (ITC) and the method was assessed to monitor the overall effect of the delivered drug obtaining simple objective parameters to define the encapsulation effectiveness of the system, discriminating dose effects even in cases of very low release. Traditional microbiological investigations and in vitro release tests were also performed in parallel for validation.

View Article and Find Full Text PDF

Poly(propylene imine) (PPI) dendrimers contained surface maltose modification are proposed as drug carriers for nucleoside analog (NA) 5'-triphosphates. The aim of this study was to investigate the interactions between PPI dendrimers of 3rd (G3) or 4th (G4) generation and cytidine-5'-triphosphate (CTP) by Isothermal Titration Calorimetry method. CTP was used as a model molecule of pyrimidine nucleoside analog-cytarabine (ara-CTP) commonly used in leukemia treatment.

View Article and Find Full Text PDF

Moringa oleifera is a plant that grows in tropical and subtropical areas of the world. Its leaves are rich of nutrients and bioactive compounds. However, several differences are reported in the literature.

View Article and Find Full Text PDF

A number of new polyhydroxy-dendritic structures have been constructed from a few basic modules. The cores were derived from N-tert(butyloxycarbonyl)tris[(propargyloxy)methyl]aminomethane, N,N'-bis-1,3-(tris-(propargyloxymethyl)methyl)-5-(hydroxymethyl)isophthalamide, and N,N',N″-tris-1,3,5-(tris-(propargyloxymethyl)methyl)-1,3,5-benzene tricarboxamide while the terminal groups were derived from β-azido-galactose and β-azido-lactose leading to six new glycodendrimeric compounds with up to 63 hydroxyl groups on the periphery. The binding ability of the new compounds to peanut agglutinin (PNA), a galactose recognizing lectin from Arachis hypogaea, was investigated by nano-Isothermal Titration Calorimetry and nano-Differential Scanning Calorimetry.

View Article and Find Full Text PDF

Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed.

View Article and Find Full Text PDF

A single-step electrospinning process will be applied to a blend of edible carbohydrate polymers (pullulan and β-cyclodextrin) to encapsulate bioactive aroma compounds and allow a humidity-triggered release. The encapsulation is rapid and efficient and the final product is an active nanofibrous membrane that can be directly used for food or active packaging applications. The membrane hosts small and homogeneously dispersed crystals of cyclodextrin-aroma complexes which are formed during the electrospinning.

View Article and Find Full Text PDF

Monogastric animals are unable to digest phytic acid, so it represents an antinutritional factor and also an environmental problem. One strategy to solve this problem is the utilization of low phytic acid (lpa) mutants that accumulate low levels of phytic P and high levels of free phosphate in the seeds; among the lpa maize mutants lpa1 exhibited the highest reduction of phytic acid in the seed. This study indicated that the low phytic acid mutations exerted pleiotropic effects not directly connected to the phytic acid pathway, such as on seed density, content of ions, and the antioxidant compounds present in the kernels.

View Article and Find Full Text PDF

In this paper, the preparation and characterization of oxygen barrier pullulan sodium montmorillonite (Na(+)-MMT) nanocomposite coatings are presented for the first time. Full exfoliation of platelets during preparation of the coating water dispersions was mediated by ultrasonic treatment, which turned out to be a pivotal factor in the oxygen barrier performance of the final material even at high relative humidity (RH) conditions [oxygen permeability coefficients ~1.43 ± 0.

View Article and Find Full Text PDF

A new antifog coating made of pullulan is described in this work. The antifog properties are discussed in terms of wettability, surface chemistry/morphology, and by quantitative assessment of the optical properties (haze and transparency) before and after fog formation. The work also presents the results of antifog tests simulating the typical storage conditions of fresh foods.

View Article and Find Full Text PDF

The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan.

View Article and Find Full Text PDF

A new Liposomal-Locked in-Dendrimer (LLD) formed by DPPC-DPPG and PAMAM 3.5 incorporating the anticancer drug DOX was studied by means of spectroscopic and DSC investigations. Multilamellar Lipid Bilayers were also considered for the sake of comparison.

View Article and Find Full Text PDF

The D-trehalose/D-maltose-binding protein (TMBP), a monomeric protein of 48 kDa, is one component of the trehalose and maltose uptake system. In the hyperthermophilic archaeon T. litoralis this is mediated by a protein-dependent ATP-binding cassette system transporter.

View Article and Find Full Text PDF

Small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM) were used to investigate the internal structure of wheat starch granules with different amylose content. Different approaches were used for treatment (interpretation) of SAXS data to assess the values of structural parameters of amylopectin clusters and the size of crystalline and amorphous lamella in different wheat starches. The average values of the semi-crystalline growth rings thickness in starches have been determined and the relationship between structural characteristics and thermodynamic melting parameters is discussed.

View Article and Find Full Text PDF