We examine the interactions between polyelectrolytes (PEs) and uncharged substrates under conditions corresponding to a dielectric discontinuity between the aqueous solution and the substrate. To this end, we vary the relevant system characteristics, in particular the substrate dielectric constant ɛs under different salt conditions. We employ coarse-grained molecular dynamics simulations with rodlike PEs in salt solutions with explicit ions and implicit water solvent with dielectric constant ɛw = 80.
View Article and Find Full Text PDFIn this study, evaporation-induced size segregation and interparticle interactions are harnessed to tune the microstructure of photocatalytic colloidal coatings containing TiO nanoparticles and polymer particles. This enabled the fabrication of a library of five distinct microstructures: TiO-on-top stratification, a thin top layer of polymer or TiO, homogeneous films of raspberry particles, and a sandwich structure. The photocatalytic and antibacterial activities of the coatings were evaluated by testing the viability of Methicillin-resistant (MRSA) bacteria using the ISO-27447 protocol, showing a strong correlation with the microstructure.
View Article and Find Full Text PDFNature has already suggested bioinspired functions. Beyond them, adaptive and trainable functions could be the inspiration for novel responsive soft matter beyond the state-of-the-art classic static bioinspired, stimulus-responsive, and shape-memory materials. Here, we describe magnetic assembly/disassembly of electrically conducting soft ferromagnetic nickel colloidal particles into surface topographical pillars for bistable electrical trainable memories.
View Article and Find Full Text PDFIt is well established that when multivalent counterions or salts are added to a solution of highly charged polyelectrolytes (PEs), correlation effects can cause charge inversion of the PE, leading to electrophoretic mobility (EM) reversal. In this work, we use coarse-grained molecular-dynamics simulations to unravel the less understood effect of coion valency on EM reversal for rigid DNA-like PEs. We find that EM reversal induced by multivalent counterions is suppressed with increasing coion valency in the salt added and eventually vanishes.
View Article and Find Full Text PDFCondensates are molecular assemblies that are formed through liquid-liquid phase separation and play important roles in many biological processes. The rational design of condensate formation and their properties is central to applications, such as biosynthetic materials, synthetic biology, and for understanding cell biology. Protein engineering is used to make a triblock structure with varying terminal blocks of folded proteins on both sides of an intrinsically disordered mid-region.
View Article and Find Full Text PDFThe self-assembly of dioctyl sodium sulfosuccinate (AOT) model surfactant in solvent environments of differing polarity is examined by means of dissipative particle dynamics (DPD) bead model parametrized against Hildebrand solubility parameters from atomistic molecular dynamics (MD) simulations. The model predicts that in hydrophobic solvents ( dodecane) the surfactant forms small ( ∼ 8) reverse micellar aggregates, while in a solvent corresponding to water lamellar assembly takes place, in good agreement with literature structural parameters. Interestingly, solvents of intermediate polarity lead to formation of large, internally structured aggregates.
View Article and Find Full Text PDFMultivalent ions in solutions with polyelectrolytes (PEs) induce electrostatic correlations that can drastically change ion distributions around the PEs and their mutual interactions. Using coarse-grained molecular dynamics simulations, we show how in addition to valency, ion shape and concentration can be harnessed as tools to control rigid like-charged PE-PE interactions. We demonstrate a correlation between the orientational ordering of aspherical ions and how they mediate the effective PE-PE attraction induced by multivalency.
View Article and Find Full Text PDFHypothesis: The degree of polymerization of amphiphilic di-block co-polymers, which can be varied with ease in computer simulations, provides a means to control self-assembling di-block co-polymer coatings on hydrophilic substrates.
Simulations: We examine self-assembly of linear amphiphilic di-block co-polymers on hydrophilic surface via dissipative particle dynamics simulations. The system models a glucose based polysaccharide surface on which random co-polymers of styrene and n-butyl acrylate, as the hydrophobic block, and starch, as the hydrophilic block, forms a film.
Phys Chem Chem Phys
September 2022
We use the recently developed soft-potential-enhanced Poisson-Boltzmann (SPB) theory to study the interaction between two parallel polyelectrolytes (PEs) in monovalent ionic solutions in the weak-coupling regime. The SPB theory is fitted to ion distributions from coarse-grained molecular dynamics (MD) simulations and benchmarked against all-atom MD modelling for poly(diallyldimethylammonium) (PDADMA). We show that the SPB theory is able to accurately capture the interactions between two PEs at distances beyond the PE radius.
View Article and Find Full Text PDFPhase transitions have an essential role in the assembly of nature's protein-based materials into hierarchically organized structures, yet many of the underlying mechanisms and interactions remain to be resolved. A central question for designing proteins for materials is how the protein architecture and sequence affects the nature of the phase transitions and resulting assembly. In this work, we produced 82 kDa (1×), 143 kDa (2×), and 204 kDa (3×) silk-mimicking proteins by taking advantage of protein ligation by SpyCatcher/Tag protein-peptide pair.
View Article and Find Full Text PDFWe present a soft-potential-enhanced Poisson-Boltzmann (SPB) theory to efficiently capture ion distributions and electrostatic potential around rodlike charged macromolecules. The SPB model is calibrated with a coarse-grained particle-based model for polyelectrolytes (PEs) in monovalent salt solutions as well as compared to a full atomistic molecular dynamics simulation with the explicit solvent. We demonstrate that our modification enables the SPB theory to accurately predict monovalent ion distributions around a rodlike PE in a wide range of ion and charge distribution conditions in the weak-coupling regime.
View Article and Find Full Text PDFThe effects of particle interactions on the size segregation and assembly of colloidal mixtures during drying were investigated. A cationic surfactant was added to a binary latex/silica colloidal dispersion that has been shown to self-stratify upon drying at room temperature. Atomic force microscopy was used to show that the change in particle interactions due to the presence of surfactants reduced the degree of stratification and, in some cases, suppressed the effect altogether.
View Article and Find Full Text PDFWe harness the self-assembly of aqueous binary latex/silica particle blends during drying to fabricate films segregated by size in the vertical direction. We report for the first time the experimental drying of ternary colloidal dispersions and demonstrate how a ternary film containing additional small latex particles results in improved surface stability and abrasion resistance compared with a binary film. Through atomic force microscopy (AFM) and energy-dispersive X-ray spectroscopy (EDX), we show that the vertical distribution of filler particles and the surface morphologies of the films can be controlled by altering the evaporation rate and silica volume fraction.
View Article and Find Full Text PDFFor a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center.
View Article and Find Full Text PDFThe classical dynamical density functional theory (DDFT) provides an approximate extension of equilibrium DFT to treat nonequilibrium systems subject to Brownian dynamics. However, the method fails when applied to driven systems, such as sheared colloidal dispersions. The breakdown of DDFT can be traced back to an inadequate treatment of the flow-induced distortion of the pair correlation functions.
View Article and Find Full Text PDF