Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in the external mechanical load by adding or removing torque-generating (stator) units. But the molecular mechanism behind this mechano-adaptation remains unclear.
View Article and Find Full Text PDFProtein concentration in a living cell fluctuates over time due to noise in growth and division processes. In the high expression regime, variance of the protein concentration in a cell was found to scale with the square of the mean, which belongs to a general phenomenon called Taylor's law (TL). To understand the origin for these fluctuations, we measured protein concentration dynamics in single .
View Article and Find Full Text PDFStochastic pulsatile dynamics have been observed in an increasing number of biological circuits with known mechanism involving feedback control and bistability. Surprisingly, recent single-cell experiments in flagellar synthesis showed that flagellar genes are activated in stochastic pulses without the means of feedback. However, the mechanism for pulse generation in these feedbackless circuits has remained unclear.
View Article and Find Full Text PDFHsp70 molecular chaperones are abundant ATP-dependent nanomachines that actively reshape non-native, misfolded proteins and assist a wide variety of essential cellular processes. Here, we combine complementary theoretical approaches to elucidate the structural and thermodynamic details of the chaperone-induced expansion of a substrate protein, with a particular emphasis on the critical role played by ATP hydrolysis. We first determine the conformational free-energy cost of the substrate expansion due to the binding of multiple chaperones using coarse-grained molecular simulations.
View Article and Find Full Text PDFDuring and after protein translation, molecular chaperones require ATP hydrolysis to favor the native folding of their substrates and, under stress, to avoid aggregation and revert misfolding. Why do some chaperones need ATP, and what are the consequences of the energy contributed by the ATPase cycle? Here, we used biochemical assays and physical modeling to show that the bacterial chaperones GroEL (Hsp60) and DnaK (Hsp70) both use part of the energy from ATP hydrolysis to restore the native state of their substrates, even under denaturing conditions in which the native state is thermodynamically unstable. Consistently with thermodynamics, upon exhaustion of ATP, the metastable native chaperone products spontaneously revert to their equilibrium non-native states.
View Article and Find Full Text PDFThe shape of a polymer plays an important role in its interactions with surrounding molecules. We characterize the shape and the orientational properties of a polymer chain under tension in a good solvent, a physical condition that is often realized both in single-molecule experiments and in vivo. Our findings reveal the existence of hitherto unobserved universal laws encompassing polymers with different rigidities and including the possible presence of excluded-volume effects, showing that both shape and orientation are solely determined by the force contribution to the free energy.
View Article and Find Full Text PDF