Publications by authors named "Alberto Ramirez-Mena"

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities.

View Article and Find Full Text PDF

Background And Objective: Prostate cancer is one of the most prevalent forms of cancer in men worldwide. Traditional screening strategies such as serum PSA levels, which are not necessarily cancer-specific, or digital rectal exams, which are often inconclusive, are still the screening methods used for the disease. Some studies have focused on identifying biomarkers of the disease but none have been reported for diagnosis in routine clinical practice and few studies have provided tools to assist the pathologist in the decision-making process when analyzing prostate tissue.

View Article and Find Full Text PDF

The use of machine learning techniques for the construction of predictive models of disease outcomes (based on omics and other types of molecular data) has gained enormous relevance in the last few years in the biomedical field. Nonetheless, the virtuosity of omics studies and machine learning tools are subject to the proper application of algorithms as well as the appropriate pre-processing and management of input omics and molecular data. Currently, many of the available approaches that use machine learning on omics data for predictive purposes make mistakes in several of the following key steps: experimental design, feature selection, data pre-processing, and algorithm selection.

View Article and Find Full Text PDF

Statistical methods for enrichment analysis are important tools to extract biological information from omics experiments. Although these methods have been widely used for the analysis of gene and protein lists, the development of high-throughput technologies for regulatory elements demands dedicated statistical and bioinformatics tools. Here, we present a set of enrichment analysis methods for regulatory elements, including CpG sites, miRNAs, and transcription factors.

View Article and Find Full Text PDF