Publications by authors named "Alberto Pinto"

In recent years, it has been verified that collective cell migration is a fundamental step in tumor spreading and metastatic processes. In this paper, we demonstrate for the first time how low-intensity ultrasound produces long-term inhibition of collective migration of epithelial cancer cells in wound healing processes. In particular, we show how pancreatic tumor cells, PANC-1, grown as monolayers respond to these waves at frequencies close to 1 MHz and low intensities (<100 mW cm) for 48-72 h of culture after some minutes of a single ultrasound irradiation.

View Article and Find Full Text PDF

Polymeric separators have been developed since 2010 to produce acoustophoretic separation of particles or cells in suspension with high efficiency. They rely on three-dimensional (3D) resonances of their whole structure actuated by ultrasounds. In this paper, a numerical 3D analysis is presented and validated as the only tool for optimization of these polymeric chips to perform efficient separation applications.

View Article and Find Full Text PDF

Inspired by the Daley-Kendall and Goffman-Newill models, we propose an Ignorant-Believer-Unbeliever rumor (or fake news) spreading model with the following characteristics: (i) a network contact between individuals that determines the spread of rumors; (ii) the value (cost versus benefit) for individuals who search for truthful information (learning); (iii) an impact measure that assesses the risk of believing the rumor; (iv) an individual search strategy based on the probability that an individual searches for truthful information; (v) the population search strategy based on the proportion of individuals of the population who decide to search for truthful information; (vi) a payoff for the individuals that depends on the parameters of the model and the strategies of the individuals. Furthermore, we introduce evolutionary information search dynamics and study the dynamics of population search strategies. For each value of searching for information, we compute evolutionarily stable information (ESI) search strategies (occurring in non-cooperative environments), which are the attractors of the information search dynamics, and the optimal information (OI) search strategy (occurring in (eventually forced) cooperative environments) that maximizes the expected information payoff for the population.

View Article and Find Full Text PDF

Acoustophoretic blood plasma separation is based on cell enrichment processes driven by acoustic radiation forces. The combined influence of hematocrit and hydrodynamics has not yet been quantified in the literature for these processes acoustically induced on blood. In this paper, we present an experimental study of blood samples exposed to ultrasonic standing waves at different hematocrit percentages and hydrodynamic conditions, in order to enlighten their individual influence on the acoustic response of the samples.

View Article and Find Full Text PDF

The special issue is available from: https://www.aimspress.com/newsinfo/1079.

View Article and Find Full Text PDF

We fit an immune response model to data reporting the CD4 T cell numbers from the 28 days following the infection of mice with LCMV. We used an ODE model that was previously used to describe qualitatively the behaviour of CD4 T cells, regulatory T cells (Tregs) and interleukine-2 (IL-2) density. The model considered two clonotypes of T cells in order to fit simultaneously the two time series for the gp61 and NP309 epitopes.

View Article and Find Full Text PDF

The use of blood samples as liquid biopsy is a label-free method for cancer diagnosis that offers benefits over traditional invasive biopsy techniques. Cell sorting by acoustic waves offers a means to separate rare cells from blood samples based on their physical properties in a label-free, contactless and biocompatible manner. Herein, we describe a flow-through separation approach that provides an efficient separation of tumor cells (TCs) from white blood cells (WBCs) in a microfluidic device, "THINUS-Chip" (Thin-Ultrasonic-Separator-Chip), actuated by ultrasounds.

View Article and Find Full Text PDF

We use the reinfection SIRI epidemiological model to analyze the impact of education programs and vaccine scares on individuals decisions to vaccinate or not. The presence of the reinfection provokes the novelty of the existence of three Nash equilibria for the same level of the morbidity relative risk instead of a single Nash equilibrium as occurs in the SIR model studied by Bauch and Earn (PNAS 101:13391-13394, 2004). The existence of three Nash equilibria, with two of them being evolutionary stable, introduces two scenarios with relevant and opposite features for the same level of the morbidity relative risk: the low-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a low probability; and the high-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a high probability.

View Article and Find Full Text PDF

Previous epidemiological studies on SIS model have only considered the dynamic evolution of the mean value and the variance of the infected individuals. In this paper, through cumulant neglection, we use the dynamic equations of all the moments of infected individuals to develop a recursive method to compute the equilibria manifold of the moment closure ODE's. Specifically, we use the stable equilibria of the moment closure ODE's to obtain good approximations of the quasi-stationary states of the SIS model.

View Article and Find Full Text PDF

Recently, the notion of a reinfection threshold in epidemiological models of only partial immunity has been debated in the literature. We present a rigorous analysis of a model of reinfection which shows a clear threshold behaviour at the parameter point where the reinfection threshold was originally described. Furthermore, we demonstrate that this threshold is the mean field version of a transition in corresponding spatial models of immunization.

View Article and Find Full Text PDF

We study the SIS and SIRI epidemic models discussing different approaches to compute the thresholds that determine the appearance of an epidemic disease. The stochastic SIS model is a well known mathematical model, studied in several contexts. Here, we present recursively derivations of the dynamic equations for all the moments and we derive the stationary states of the state variables using the moment closure method.

View Article and Find Full Text PDF

For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we determine the phase transition lines using pair approximation for the moments derived from the master equation. We introduce a scaling argument that allows us to determine analytically an explicit formula for these phase transition lines and prove rigorously the heuristic results obtained previously.

View Article and Find Full Text PDF