Publications by authors named "Alberto Pelaez-Garcia"

Article Synopsis
  • A study aimed at understanding colorectal cancer (CRC) biology identified early diagnostic markers through quantitative proteomics of tissue samples from patients with stage I sporadic CRC.
  • Two experiments using advanced mass spectrometry techniques revealed 2,681 proteins, with 284 upregulated and 280 downregulated in adenoma and adenocarcinoma tissues compared to healthy samples.
  • Further investigation of ten dysregulated proteins showed that SLC8A1 and TXNDC17 are crucial for CRC development and could serve as potential early diagnostic markers in plasma tests.
View Article and Find Full Text PDF

Context: DNA mismatch repair (MMR) deficiency (dMMR) testing is now recommended in endometrial cancer. Defect identification in the molecules participating in this pathway, or the presence of microsatellite instability, are commonly employed for this purpose. Novel methods are continuously evolving to report dMMR/microsatellite instability and to easily perform routine diagnoses.

View Article and Find Full Text PDF

The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the Orbitrap Exploris 480 mass spectrometer for the TMT quantitative proteomics analyses of these complex samples in comparison to the analysis of protein extracts from cells, frozen tissue, and exosomes isolated from large volume plasma samples (3 mL). TMT experiments were performed using a two-hour gradient LC-MS/MS with or without FAIMS and two compensation voltages (CV = -45 and CV = -60).

View Article and Find Full Text PDF

SPRY domain-containing protein 7 (SPRYD7) is a barely known protein identified via spatial proteomics as being upregulated in highly metastatic-to-liver KM12SM colorectal cancer (CRC) cells in comparison to its isogenic poorly metastatic KM12C CRC cells. Here, we aimed to analyze SPRYD7's role in CRC via functional proteomics. Through immunohistochemistry, the overexpression of SPRYD7 was observed to be associated with the poor survival of CRC patients and with an aggressive and metastatic phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • * The study compared different methods for determining MMR status, including immunohistochemistry (IHC), PCR-based microsatellite instability (MSI) analysis, and targeted genetic sequencing, using 126 early-stage EC samples.
  • * Results showed that over half of the samples were deficient in MMR, with inconsistencies noted among testing methods, particularly between IHC and MSI assessments, highlighting the need for further research to find the best testing approach.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis.

View Article and Find Full Text PDF

Background: Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression.

View Article and Find Full Text PDF

Endometrial tumors show substantial heterogeneity in their immune microenvironment. This heterogeneity could be used to improve the accuracy of current outcome prediction tools. We assessed the immune microenvironment of 235 patients diagnosed with low-grade, early-stage endometrial cancer.

View Article and Find Full Text PDF

Approximately 25% of colorectal cancer (CRC) patients experience systemic metastases, with the most frequent target organs being the liver and lung. Metabolic reprogramming has been recognized as one of the hallmarks of cancer. Here, metabolic and functional differences between two CRC cells with different metastatic organotropisms (metastatic KM12SM CRC cells to the liver and KM12L4a to the lung when injected in the spleen and in the tail vein of mice) were analysed in comparison to their parental non-metastatic isogenic KM12C cells, for a subsequent investigation of identified metabolic targets in CRC patients.

View Article and Find Full Text PDF

Background: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells.

Methods: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP.

View Article and Find Full Text PDF

There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer.

View Article and Find Full Text PDF

Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases.

View Article and Find Full Text PDF

New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new electrochemical bioplatform that can simultaneously detect four different types of DNA and RNA methylations, specifically 5-methylcytosine, 5-hydroxymethylcytosine, N6-methyladenine, and N6-methyladenosine.
  • It utilizes direct competitive immunoassays on magnetic beads and screen-printed carbon electrodes to ensure high sensitivity and selective measurement in under 45 minutes.
  • The platform has been validated for practical use, effectively distinguishing between cancerous cells and healthy tissues, particularly in colorectal cancer patients.
View Article and Find Full Text PDF

Low-grade and early-stage endometrioid endometrial carcinomas (EECs) have an overall good prognosis but biomarkers identifying patients at risk of relapse are still lacking. Recently, CTNNB1 exon 3 mutation has been identified as a potential risk factor of recurrence in these patients. We evaluate the prognostic value of CTNNB1 mutation in a single-centre cohort of 218 low-grade, early-stage EECs, and the correlation with beta-catenin and LEF1 immunohistochemistry as candidate surrogate markers.

View Article and Find Full Text PDF

Identifying the druggable target is crucial for patients with nonsquamous advanced non-small cell lung cancer (NSCLC). This article adds to the spectrum of ROS1 fusion cases described in NSCLC. We describe a novel SLC12A2-ROS1 rearrangement that has not been previously reported in other cancers: a fusion that has clinical and radiological sensitivity to crizotinib.

View Article and Find Full Text PDF

Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AHR) interacting protein (AIP) is a chaperone which binds to inactive AHR in the cell cytoplasm. AHR is best known for mediating the toxicity of halogenated aromatics, but it has also been linked to carcinogenesis and tumor progression in several tumor types. Our aims are to assess the features of AIP immunohistochemical (IHC) staining and to evaluate its possible role as a prognostic marker in gastric cancer (GC).

View Article and Find Full Text PDF

This work reports the first bioplatform able to determine electrochemically 5-hydroxymethylcytosine (5-hmC) methylation events at localized sites and single-base sensitivity. The described bioplatform relies on a specific antibody (anti-5-hmC), further conjugated with commercial bioreagents loaded with multiple horseradish peroxidase (HRP) molecules, recognizing the epimark in a target DNA, captured through hybridization onto streptavidin-magnetic microbeads (Strep-MBs) modified with a complementary DNA capture probe. The electrochemical detection is performed by amperometry (-0.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer related death worldwide. Its diagnosis at early stages would significantly improve the survival of CRC patients. The humoral immune response has been demonstrated useful for cancer diagnosis, predating clinical symptoms up to 3 years.

View Article and Find Full Text PDF

Low-grade and early Federation for Gynecology and Obstetrics (FIGO) stage endometrioid endometrial carcinomas (EEC) have an excellent prognosis. However, approximately 10% of patients develop recurrence, which cannot be correctly predicted at diagnosis. We evaluated myoinvasive patterns as a prognostic factor of relapse in low-grade, early-stage EEC.

View Article and Find Full Text PDF

This paper reports the preparation of versatile electrochemical biosensing platforms for the simple, rapid, and PCR-independent detection of the most frequent DNA methylation marks (5-methylcytosine, 5-mC, and/or 5-hydroxymethylcytosine, 5-hmC) both at global and gene-specific levels. The implemented strategies, relying on the smart coupling of immuno-magnetic beads (MBs), specific DNA probes and amperometric detection at screen-printed carbon electrodes (SPCEs), provided sensitive and selective determination of the target methylated DNAs in less than 90 min with a great reproducibility and demonstrated feasibility for the simultaneous detection of the same or different cytosine epimarks both at global level and in different loci of the same gene or in different genes. The bioplatforms were applied to determine global methylation events in paraffin-embedded colorectal tissues and specific methylation at promoters of tumor suppressor genes in genomic DNA extracted from cancer cells and paraffin-embedded colorectal tissues, and in serum without previous DNA extraction from cancer patients.

View Article and Find Full Text PDF

Background/aim: Predicting response to treatment in high-grade serous ovarian carcinoma (HGSOC) still remains a clinical challenge. The standard-of-care for first-line chemotherapy, based on a combination of carboplatin and paclitaxel, achieves a high response rate. However, the development of drug resistance is one of the major limitations to efficacy.

View Article and Find Full Text PDF

We report a rapid and sensitive electrochemical strategy for the detection of gene-specific 5-methylcytosine DNA methylation. Magnetic beads (MBs) modified with an antibody for 5-methylcytosines (5-mC) are used for the capture of any 5-mC methylated single-stranded (ss)DNA sequence. A flanking region next to the 5-mCs of the captured methylated ssDNA is recognized by hybridization with a synthetic biotinylated DNA sequence.

View Article and Find Full Text PDF

This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system.

View Article and Find Full Text PDF