The study of ultrafast photoinduced dynamics of adsorbates on metal surfaces requires thorough investigation of laser-excited electrons and, in many cases, the highly excited surface lattice. While ab initio molecular dynamics with electronic friction and thermostats (, )-AIMDEF addresses such complex modeling, it imposes severe computational costs, hindering quantitative comparison with experimental desorption probabilities. In order to bypass this limitation, we utilize the embedded atom neural network method to construct a potential energy surface (PES) for the coadsorption of CO and O on Ru(0001).
View Article and Find Full Text PDFDue to their electrochemical and oxidative stability, organic-terminated semiconductor surfaces are well suited to applications in, for example, photoelectrodes and electrochemical cells, which explains the lively interest in their detailed characterization. Helium atom scattering (HAS) is a useful tool to carry out such characterization. Here, we have simulated HAS in He/CH3-Si(111) based on density functional theory (DFT) potential energy surfaces (PESs) and multi-configuration time-dependent Hartree (MCTDH) dynamics.
View Article and Find Full Text PDFFundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms.
View Article and Find Full Text PDFObtaining quantitative agreement between theory and experiment for dissociative adsorption of hydrogen on and associative desorption of hydrogen from Cu(111) remains challenging. Particularly troubling is the fact that theory gives values for the high energy limit to the dissociative adsorption probability that is as much as two times larger than experiment. In the present work we approach this discrepancy in three ways.
View Article and Find Full Text PDF