Biodegradable scaffolds of poly (L-lactide-co-ε-caprolactone) (PLCL) and reduced graphene oxide (rGO) were prepared by TIPS (thermally induced phase separation). The nonisothermal cold crystallization kinetics were investigated by differential scanning calorimetry (DSC) with various cooling rates. The experimental values indicate that nonisothermal crystallization improves with cooling rate, but the increasing rGO concentration delays crystallization at higher temperatures.
View Article and Find Full Text PDFResearch on T-configuration aluminum constructions effectively decreases fuel consumption, increases strength, and develops aerial structures. In this research, the effects of friction stir welding (FSW) tool offset (TO) on Al-Mg-Si alloy mixing and bonding in T-configurations is studied. The process is simulated by the computational fluid dynamic (CFD) technique to better understand the material mixing flow and the bonding between the skin and flange during FSW.
View Article and Find Full Text PDFIn the numerical simulation of hot forming processes, the correct description of material flow stress is very important for the accuracy of the results. For complex manufacturing processes, such as the rotary tube piercing (RTP), constitutive laws based on both power and exponential mathematical expressions are commonly used due to its inherent simplicity, despite the limitations that this approach involves, namely, the use of accumulated strain as a state parameter. In this paper, a constitutive model of the P91 steel derived from the evolution of dislocation density with strain, which takes into account the mechanisms of dynamic recovery (DRV) and dynamic recrystallization (DRX), is proposed for the finite element (FE) analysis of the RTP process.
View Article and Find Full Text PDF