Globally, huge amounts of cotton and sunflower stalks are generated annually. These wastes are being underutilized since they are mostly burned in the fields. So, in this work, we proposed a three-step method consisting of acid pre-treatment, alkaline hydrolysis, and bleaching for the extraction of cellulose pulps.
View Article and Find Full Text PDFThe present work describes a protocol of chemical activation, with acid catalyst, of olive endocarps to obtain acid insoluble lignin-rich materials with high capacities for the adsorption of furfural present in aqueous media. During biomass activation, factors such as acid concentration, reaction time and temperature, solid/liquid ratio and the presence of water extractives strongly affected both the surface characteristics of the treated bioadsorbents and their capacities for furfural retention (percentage increase close to 600% with respect to the crude biomass). Once a treated solid with good adsorbent properties was obtained, the optimal conditions for adsorption were found: stirring speed 80 rpm, temperature 303 K and adsorbent load 7.
View Article and Find Full Text PDFThe present work studies the use of olive pit (OP) as a reinforcement in the manufacture of composites based on a post-consumer recycled polypropylene (rPP). In this way, it is feasible to provide added value from olive pits, a by-product resulting from the olive industry operations, while promoting the circular economy and reducing the use of fossil-based polymers. For this purpose, suitable samples were manufactured using 25 wt% and 40 wt% of OP.
View Article and Find Full Text PDFhas been employed to study, initially, the influence of the oxygen availability on D-xylose to xylitol fermentation, as this parameter is considered as one of the most critical variables for this bio alcohol accumulation. Apart from the air supplied in the fermentation process through the stirring vortex (0.0 v/v/min), additional aeration rates (0.
View Article and Find Full Text PDFCo-based amorphous microwires presenting the giant magnetoimpedance effect are proposed as sensing elements for high sensitivity biosensors. In this work we report an experimental method for contactless detection of stress, temperature, and liquid concentration with application in medical sensors using the giant magnetoimpedance effect on microwires in the GHz range. The method is based on the scattering of electromagnetic microwaves by FeCoSiB amorphous metallic microwires.
View Article and Find Full Text PDFThe growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2017
Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings.
View Article and Find Full Text PDFIn order to produce bioethanol from olive tree pruning biomass, deacetylation was performed employing sodium hydroxide. Optimal conditions were determined using experimental design techniques. The highest acetic acid removal (3.
View Article and Find Full Text PDFOlive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.
View Article and Find Full Text PDFStatistical modeling and optimization of dilute sulfuric acid hydrolysis of olive tree pruning biomass has been performed using response surface methodology. Central composite rotatable design was applied to assess the effect of acid concentration, reaction time and temperature on efficiency and selectivity of hemicellulosic monomeric carbohydrates to d-xylose. Second-order polynomial model was fitted to experimental data to find the optimum reaction conditions by multiple regression analysis.
View Article and Find Full Text PDFThe aim of this work was to study the ability of Saccharomyces cerevisiae (baker's yeast) to metabolize a variety of aromatic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, obtained by acid hydrolysis at different sugar and toxic compound concentrations. Initially, the hydrolysates were inoculated with S. cerevisiae (10 g L(-1)) and incubated at 30 °C under agitation at 200 rpm for 6 h.
View Article and Find Full Text PDFUsing the severity factor, it has been possible to study cellulose and hemicellulose fractional conversion, sugar yields change and oligosaccharides variation through olive tree pruning biomass pretreatments with acid or liquid hot water under pressure. The temperatures tested were in the range 180-230°C, operation time varying between 0 and 30min and acid concentration used did not exceed 0.05M.
View Article and Find Full Text PDFBioprocess Biosyst Eng
October 2008
The influence of the type and concentration of acid in the hydrolysis process and its effect on the subsequent fermentation by Pachysolen tannophilus (ATCC 32691) to produce ethanol and xylitol was studied. The hydrolysis experiments were performed using hydrochloric, sulphuric and trifluoroacetic acids in concentrations ranging from 0.1 to 1.
View Article and Find Full Text PDF