We present a protocol for the on-surface synthesis of polyboroxine molecules derived from boroxine molecules precursors. This process is promoted by oxygen species present on the Au(111) surface: oxygen atoms facilitate the detachment of naphthalene units of trinaphthyl-boroxine molecules and bridge two unsaturated boroxine centers to form a boroxine-O-boroxine chemical motif. X-ray spectroscopic characterization shows that, as the synthesis process proceeds, it progressively tunes the electronic properties of the interface, thus providing a promising route to control the electron level alignment.
View Article and Find Full Text PDFWe deposit azafullerene CN radicals in a vacuum on the Au(111) surface for layer thicknesses between 0.35 and 2.1 monolayers (ML).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2021
Self-metalation is a promising route to include a single metal atom in a tetrapyrrolic macrocycle in organic frameworks supported by metal surfaces. The molecule-surface interaction may provide the charge transfer and the geometric distortion of the molecular plane necessary for metal inclusion. However, at a metal surface the presence of an activation barrier can represent an obstacle that cannot be compensated by a higher substrate temperature without affecting the layer integrity.
View Article and Find Full Text PDFThe creation of stable molecular monolayers on metallic surfaces is a fundamental challenge of surface chemistry. N-Heterocyclic carbenes (NHCs) were recently shown to form self-assembled monolayers that are significantly more stable than the traditional thiols on Au system. Here we theoretically and experimentally demonstrate that the smallest cyclic carbene, cyclopropenylidene, binds even more strongly than NHCs to Au surfaces without altering the surface structure.
View Article and Find Full Text PDFCrown ethers, assembled into a regular 2D array a chemical guest-host recognition process, have been successfully employed to trap sodium atoms on a surface, under ultra-high vacuum conditions.
View Article and Find Full Text PDFStable organic radicals have potential applications for building organic spintronic devices. To fulfill this potential, the interface between organic radicals and metal electrodes must be well characterized. Here, through a combined effort that includes synthesis, scanning tunneling microscopy, X-ray spectroscopy, and single-molecule conductance measurements, we comprehensively probe the electronic interaction between gold metal electrodes and a benchtop stable radical-the Blatter radical.
View Article and Find Full Text PDFN-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp-hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain.
View Article and Find Full Text PDFWe compare the ultrafast charge transfer dynamics of molecules on epitaxial graphene and bilayer graphene grown on Ni(111) interfaces through first principles calculations and X-ray resonant photoemission spectroscopy. We use 4,4'-bipyridine as a prototypical molecule for these explorations as the energy level alignment of core-excited molecular orbitals allows ultrafast injection of electrons from a substrate to a molecule on a femtosecond timescale. We show that the ultrafast injection of electrons from the substrate to the molecule is ∼4 times slower on weakly coupled bilayer graphene than on epitaxial graphene.
View Article and Find Full Text PDFThe synthesis and preliminary characterization of a boron-based 2D framework are presented. The peculiar electronic and morphological properties of this compound, together with its facile formation process, enable it to be used as a novel smart material for the design of electronic devices.
View Article and Find Full Text PDFWe performed a combined experimental and theoretical study of the assembly of phenylboronic acid on the Au(111) surface, which is found to lead to the formation of triphenylboroxines by spontaneous condensation of trimers of molecules. The interface between the boroxine group and the gold surface has been characterized in terms of its electronic properties, revealing the existence of an ultra-fast charge delocalization channel in the proximity of the oxygen atoms of the heterocyclic group. More specifically, the DFT calculations show the presence of an unoccupied electronic state localized on both the oxygen atoms of the adsorbed triphenylboroxine and the gold atoms of the topmost layer.
View Article and Find Full Text PDFA number of studies have investigated the properties of monomeric and double-decker phthalocyanines (Pcs) adsorbed on metal surfaces, in view of applications in spintronics devices. In a combined experimental and theoretical study, we consider here a different member of the Pcs family, the (RuPc) dimer, whose structure is characterized by two paired up magnetic centers embedded in a double-decker architecture. For (RuPc) on Ag(111), we show that this architecture works as a preserving cage by shielding the Ru-Ru pair from a direct interaction with the surface atoms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2016
Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires.
View Article and Find Full Text PDFWe investigated the plasmonic response of a 2-dimensional ordered array of closely spaced (few-nm apart) Au nanoparticles covered by a large-area single-layer graphene sheet. The array consisted of coherently aligned nanoparticle chains, endowed with a characteristic uniaxial anisotropy. The joint effect of such a morphology and of the very small particle size and spacing led to a corresponding uniaxial wrinkling of graphene in the absence of detectable strain.
View Article and Find Full Text PDFCharge transfer rates at metal/organic interfaces affect the efficiencies of devices for organic based electronics and photovoltaics. A quantitative study of electron transfer rates, which take place on the femtosecond timescale, is often difficult, especially since in most systems the molecular adsorption geometry is unknown. Here, we use X-ray resonant photoemission spectroscopy to measure ultrafast charge transfer rates across pyridine/Au(111) interfaces while also controlling the molecular orientation on the metal.
View Article and Find Full Text PDFCharge transport properties of a vertically stacked organic heterojunction based on the amino-carboxylic (A-C) hydrogen bond coupling scheme are investigated by means of X-ray resonant photoemission and the core-hole clock method. We demonstrate that hydrogen bonding in molecular bilayers of benzoic acid/cysteamine (BA/CA) with an A-C coupling scheme opens a site selective pathway for ultrafast charge transport through the junction. Whereas charge transport from single BA layer directly coupled to the Au(111) is very fast and it is mediated by the phenyl group, the interposition of an anchoring layer of CA selectively hinders the delocalization of electrons from the BA phenyl group but opens a fast charge delocalization route through the BA orbitals close to the A-C bond.
View Article and Find Full Text PDFWe investigate bidirectional femtosecond charge transfer dynamics using the core-hole clock implementation of resonant photoemission spectroscopy from 4,4'-bipyridine molecular layers on three different surfaces: Au(111), epitaxial graphene on Ni(111), and graphene nanoribbons. We show that the lowest unoccupied molecular orbital (LUMO) of the molecule drops partially below the Fermi level upon core-hole creation in all systems, opening an additional decay channel for the core-hole, involving electron donation from substrate to the molecule. Furthermore, using the core-hole clock method, we find that the bidirectional charge transfer time between the substrate and the molecule is fastest on Au(111), with a 2 fs time, then around 4 fs for epitaxial graphene and slowest with graphene nanoribbon surface, taking around 10 fs.
View Article and Find Full Text PDFAn amino-carboxylic motif is identified as a novel synthon in the formation of 2D hetero-organic architectures at surfaces. The well-defined interacting scheme we describe herein represents an ideal prototypical system for further investigation of the interaction at surfaces of the two functional groups.
View Article and Find Full Text PDFBackground: Familial combined hyperlipidemia (FCH) is a polygenic and multifactorial disease characterized by a variable phenotype showing increased levels of triglycerides and/or cholesterol. The aim of this study was to identify single nucleotides (SNPs) in lipid-related genes associated with FCH.
Methods And Results: Twenty SNPs in lipid-related genes were studied in 142 control subjects and 165 FCH patients after excluding patients with mutations in the LDLR gene and patients with the E2/E2 genotype of APOE.
We study the formation of covalent gold-carbon bonds in benzyltrimethylstannane (C10H16Sn) deposited on Au in ultra-high-vacuum conditions. Through X-ray photoemission spectroscopy and X-ray absorption measurements, we find that the molecule fragments at the Sn-benzyl bond when exposed to Au surfaces at temperatures as low as -110 °C. The resulting benzyl species is stabilized by the presence of Au(111) but only forms covalent Au-C bonds on more reactive Au surfaces like Au(110).
View Article and Find Full Text PDFUnderstanding the role of intermolecular interaction on through-space charge transfer characteristics in π-stacked molecular systems is central to the rational design of electronic materials. However, a quantitative study of charge transfer in such systems is often difficult because of poor control over molecular morphology. Here we use the core-hole clock implementation of resonant photoemission spectroscopy to study the femtosecond charge-transfer dynamics in cyclophanes, which consist of two precisely stacked π-systems held together by aliphatic chains.
View Article and Find Full Text PDFMetal-dependent conformations: a change in the adaptation of tetraphenylporphyrins (TPPs) on Ag(111) was observed in the presence of a metal ion in the macrocycle. Upon annealing at T>575 K, 2H-TPP molecules increase the overlap of the phenyl π orbitals with the substrate, thus reducing the distance. The presence of Co creates a strong bond between Co dz(2) and the Ag sp states, leaving the porphyrin macrocycle at a larger distance to the surface.
View Article and Find Full Text PDFObjective: Inflammation is a pivotal process in atherosclerosis development and progression, but the underlying molecular mechanisms remain largely obscure. We have conducted an extensive expression study of atherosclerotic plaques to identify the inflammatory pathways involved in atherosclerosis.
Methods: We studied 11 human carotid plaques, their respective adjacent regions and 7 control arteries from different subjects.
Background: Oxidation and inflammation are linked processes playing an important role in the development and progression of coronary artery disease (CAD). The relation between oxidation and inflammation markers with myocardial ischemia is still controversial. We assessed the association between paraoxonase (PON) polymorphisms (rs854560, rs662, rs7493) and high sensitivity C-reactive protein levels with stress-induced ischemia in patients with suspected CAD.
View Article and Find Full Text PDFLow-energy electron microscopy and microprobe diffraction are used to image and characterize corrugation in SiO(2)-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films.
View Article and Find Full Text PDFIn molecular devices, the importance of interfaces cannot be neglected as they determine charge injection and charge flow and, therefore, the device performance. Herein we report on the interaction of one single layer of Zn-tetraphenyl-porphyrin with Ag(110) and Si(111). Photoemission, near-edge X-ray absorption, and resonant photoemission are used to study the bonding nature, the adsorption geometry as well as the dynamics of electron transfer between the molecules and the metal or semiconductor surfaces.
View Article and Find Full Text PDF