Publications by authors named "Alberto Magi"

Background: Lipoprotein(a) [Lp(a)] level variability, related to atherothrombotic risk increase, is mainly attributed to LPA gene, encoding apolipoprotein(a), with kringle IV type 2 (KIV2) copy number variation (CNV) acting as the primary genetic determinant. Genetic characterization of Lp(a) is in continuous growth; nevertheless, the peculiar structural characteristics of this variant constitute a significant challenge to the development of effective detection methods. The aim of the study was to compare quantitative real-time PCR (qPCR) and digital droplet PCR (ddPCR) in the evaluation of KIV2 repeat polymorphism.

View Article and Find Full Text PDF

The lymphatic vascular system plays a key role in cancer progression. Indeed, the activation of lymphatic endothelial cells (LECs) through the lymphangiogenic process allows for the formation of new lymphatic vessels (LVs) that represent the major route for the dissemination of solid tumors. This process is governed by a plethora of cancer-derived and microevironmental mediators that strictly activate and control specific molecular pathways in LECs.

View Article and Find Full Text PDF

Long-read sequencing allows analyses of single nucleic-acid molecules and produces sequences in the order of tens to hundreds kilobases. Its application to whole-genome analyses allows identification of complex genomic structural-variants (SVs) with unprecedented resolution. SV identification, however, requires complex computational methods, based on either read-depth or intra- and inter-alignment signatures approaches, which are limited by size or type of SVs.

View Article and Find Full Text PDF

Polyploidization of tubular cells (TC) is triggered by acute kidney injury (AKI) to allow survival in the early phase after AKI, but in the long run promotes fibrosis and AKI-chronic kidney disease (CKD) transition. The molecular mechanism governing the link between polyploid TC and kidney fibrosis remains to be clarified. In this study, we demonstrate that immediately after AKI, expression of cell cycle markers mostly identifies a population of DNA-damaged polyploid TC.

View Article and Find Full Text PDF

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition in childhood. The disease etiology remains largely unknown; however, a key role in JIA pathogenesis is surely mediated by T cells. T-lymphocytes activity is controlled via signals, known as immune checkpoints.

View Article and Find Full Text PDF

Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with the emergence of resistance to anti cancer treatment, though molecular mechanisms and biological significance remain elusive. Genome scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG rich regions (CpG islands). We report the first high coverage whole-genome map in cancer using the long read nanopore technology, which allows simultaneous DNA-sequence and -methylation analyses on native DNA.

View Article and Find Full Text PDF

Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via β-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of β3-adrenergic receptor (β3-AR) on NB tumor cells affected tumor growth and progression.

View Article and Find Full Text PDF

Single cell RNA sequencing (scRNA-seq) is today a common and powerful technology in biomedical research settings, allowing to profile the whole transcriptome of a very large number of individual cells and reveal the heterogeneity of complex clinical samples. Traditionally, cells have been classified by their morphology or by expression of certain proteins in functionally distinct settings. The advent of next generation sequencing (NGS) technologies paved the way for the detection and quantitative analysis of cellular content.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is frequent, often fatal and, for lack of specific therapies, can leave survivors with chronic kidney disease (CKD). We characterize the distribution of tubular cells (TC) undergoing polyploidy along AKI by DNA content analysis and single cell RNA-sequencing. Furthermore, we study the functional roles of polyploidization using transgenic models and drug interventions.

View Article and Find Full Text PDF

Crescentic glomerulonephritis is characterized by vascular necrosis and parietal epithelial cell hyperplasia in the space surrounding the glomerulus, resulting in the formation of crescents. Little is known about the molecular mechanisms driving this process. Inducing crescentic glomerulonephritis in two Pax2Cre reporter mouse models revealed that crescents derive from clonal expansion of single immature parietal epithelial cells.

View Article and Find Full Text PDF

Copy number variants (CNVs) play important roles in the pathogenesis of several genetic syndromes. Traditional and molecular karyotyping are considered the first-tier diagnostic tests to detect macroscopic and cryptic deletions/duplications. However, their time-consuming and laborious experimental protocols protract diagnostic times from 3 to 15 days.

View Article and Find Full Text PDF

Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides and are known to have a serious impact on human health. While prior short-read sequencing technologies have often proved inadequate for a comprehensive assessment of structural variation, more recent long reads from Oxford Nanopore Technologies have already been proven invaluable for the discovery of large SVs and hold the potential to facilitate the resolution of the full SV spectrum. With many long-read sequencing studies to follow, it is crucial to assess factors affecting current SV calling pipelines for nanopore sequencing data.

View Article and Find Full Text PDF

Differentially DNA methylated regions (DMRs) inform on the role of epigenetic changes in cancer. We present Rocker-meth, a new computational method exploiting a heterogeneous hidden Markov model to detect DMRs across multiple experimental platforms. Through an extensive comparative study, we first demonstrate Rocker-meth excellent performance on synthetic data.

View Article and Find Full Text PDF

Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood.

View Article and Find Full Text PDF

Objective: Although the adaptive immune response to SARS-CoV-2 has been characterised in the acute and early convalescent phase of the disease, few studies explore whether natural infection elicits long-lasting immunological memory in recovered individuals. In this work, we aimed to assess the maintenance of immunological memory to SARS-CoV-2.

Methods: We evaluated the long-term virus-specific cellular and humoral immune response in the members of an Italian Serie A football team, who experienced a cluster of COVID-19 in March 2020, which was strictly evaluated in the following months.

View Article and Find Full Text PDF

In the "precision oncology" era the characterization of tumor genetic features is a pivotal step in cancer patients' management. Liquid biopsy approaches, such as analysis of cell-free DNA from plasma, represent a powerful and noninvasive strategy to obtain information about the genomic status of the tumor. Sequencing-based analyses of cell-free DNA, currently performed with second generation sequencers, are extremely powerful but poorly scalable and not always accessible also due to instrumentation costs.

View Article and Find Full Text PDF

Next-generation sequencing (NGS)'s crucial role in supporting genetic diagnosis and personalized medicine leads to the definition of Guidelines for Diagnostic NGS by the European Society of Human Genetics. Factors of different nature producing false-positive/negative NGS data together with the paucity of internationally accepted guidelines providing specified NGS quality metrics to be followed for diagnostics purpose made the Sanger validation of NGS variants still mandatory. We reported the analysis of three cases of discrepancy between NGS and Sanger sequencing in a cohort of 218 patients.

View Article and Find Full Text PDF

Background: Tandem repeat sequences are widespread in the human genome, and their expansions cause multiple repeat-mediated disorders. Genome-wide discovery approaches are needed to fully elucidate their roles in health and disease, but resolving tandem repeat variation accurately remains a challenging task. While traditional mapping-based approaches using short-read data have severe limitations in the size and type of tandem repeats they can resolve, recent third-generation sequencing technologies exhibit substantially higher sequencing error rates, which complicates repeat resolution.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidative stress can hurt retinal cells and is linked to diseases like glaucoma, but how it works isn't fully known.
  • TRPA1 is a special channel that makes oxidative stress worse, leading to inflammation and cell injury in the retina.
  • Mice without TRPA1 didn't suffer as much damage from this stress, suggesting that blocking TRPA1 might help protect against eye damage in conditions like glaucoma.
View Article and Find Full Text PDF

Runs of Homozygosity (RoHs) are popular among geneticists as the footprint of demographic processes, evolutionary forces and inbreeding in shaping our genome, and are known to confer risk of Mendelian and complex diseases. Notwithstanding growing interest in their study, there is unmet need for reliable and rapid methods for genomic analyses in large data sets. AUDACITY is a tool integrating novel RoH detection algorithm and autozygosity prediction score for prioritization of mutation-surrounding regions.

View Article and Find Full Text PDF
Article Synopsis
  • * Studies in humans and lineage tracing in mice indicate that AKI promotes tumor formation from tubular epithelial cells, resulting in tumors that follow an adenoma-carcinoma sequence.
  • * Overexpression of the NOTCH1 gene is linked to worse outcomes in pRCC patients and accelerates tumor development in mice, revealing the role of single renal progenitors in driving tumorigenesis post-AKI.
View Article and Find Full Text PDF

Increasing evidence shows an association between high lipoprotein(a) [Lp(a)] levels and atherothrombotic diseases. Lp(a) trait is largely controlled by kringle-IV type 2 (KIV-2) size polymorphism in LPA gene, encoding for apo(a). Environmental factors are considered to determinate minor phenotypic variability in Lp(a) levels.

View Article and Find Full Text PDF

Summary: VISOR is a tool for haplotype-specific simulations of simple and complex structural variants (SVs). The method is applicable to haploid, diploid or higher ploidy simulations for bulk or single-cell sequencing data. SVs are implanted into FASTA haplotypes at single-basepair resolution, optionally with nearby single-nucleotide variants.

View Article and Find Full Text PDF