Publications by authors named "Alberto M Gambaruto"

Laser ultrasound (LU) is a contactless and couplant-free remote non-destructive (NDE) technique, which uses lasers for ultrasonic generation and detection rather than conventional piezoelectric transducers. For a transducer, an important characteristic is the directivity, the angle-dependent amplitude of the ultrasonic waves generated in the material. In the non-destructive thermoelastic regime, LU source has been widely modelled as a surface force dipole.

View Article and Find Full Text PDF

A physics-based medical image segmentation method is developed. Specifically, the image greyscale intensity is used to infer the voxel partial volumes and subsequently formulate a porous medium analogy. The method involves first translating the medical image volumetric data into a three-dimensional computational domain of a porous material.

View Article and Find Full Text PDF

Near-wall transport is of utmost importance in connecting blood flow mechanics with cardiovascular disease progression. The near-wall region is the interface for biologic and pathophysiologic processes such as thrombosis and atherosclerosis. Most computational and experimental investigations of blood flow implicitly or explicitly seek to quantify hemodynamics at the vessel wall (or lumen surface), with wall shear stress (WSS) quantities being the most common descriptors.

View Article and Find Full Text PDF

Vessel with 'circular' or 'star-shaped' cross sections are studied, representing respectively dilated or constricted cases where endothelial cells smoothly line or bulge into the lumen. Computational haemodynamics simulations are carried out on idealised periodic arteriole-sized vessels, with red blood cell 'tube' hematocrit value=24%. A further simulation of a single red blood cell serves for comparison purposes.

View Article and Find Full Text PDF

The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes.

View Article and Find Full Text PDF

Newtonian and generalized Newtonian mathematical models for blood flow are compared in two different reconstructions of an anatomically realistic geometry of a saccular aneurysm, obtained from rotational CTA and differing to within image resolution. The sensitivity of the flow field is sought with respect to geometry reconstruction procedure and mathematical model choice in numerical simulations. Taking as example a patient specific intracranial aneurysm located on an outer bend under steady state simulations, it is found that the sensitivity to geometry variability is greater, but comparable, to the one of the rheological model.

View Article and Find Full Text PDF

The geometry of conduits derived from in vivo image data is subject to acquisition and reconstruction errors. This results in a degree of uncertainty in defining the bounding geometry for a patient-specific anatomical conduit. The impact of the conduit geometry uncertainty should be considered with respect to haemodynamic clinically relevant measures that may alter the perception and evaluation of prognosis and diagnosis.

View Article and Find Full Text PDF