Background: Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Novel treatments are needed to counteract the molecular mechanisms of GBM growth and drug resistance. The chaperone system (CS) members are typically cytoprotective but some, termed Hsp, can become pathogenic and participate in carcinogenesis, along with the vascular endothelial growth factor (VEGF), and we investigated them in GBM biopsies and derived cell lines.
View Article and Find Full Text PDFA few reports suggest that molecular mimicry can have a role in determining the more severe and deadly forms of COVID-19, inducing endothelial damage, disseminated intravascular coagulation, and multiorgan failure. Heat shock proteins/molecular chaperones can be involved in these molecular mimicry phenomena. However, tumor cells can display on their surface heat shock proteins/molecular chaperones that are mimicked by SARS-CoV-2 molecules (including the Spike protein), similarly to what happens in other bacterial or viral infections.
View Article and Find Full Text PDFCell Stress Chaperones
September 2020
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the cause of COVID-19 disease, has the potential to elicit autoimmunity because mimicry of human molecular chaperones by viral proteins. We compared viral proteins with human molecular chaperones, many of which are heat shock proteins, to determine if they share amino acid-sequence segments with immunogenic-antigenic potential, which can elicit cross-reactive antibodies and effector immune cells with the capacity to damage-destroy human cells by a mechanism of autoimmunity. We identified the chaperones that can putatively participate in molecular mimicry phenomena after SARS-CoV-2 infection, focusing on those for which endothelial cell plasma-cell membrane localization has already been demonstrated.
View Article and Find Full Text PDFViruses can generate molecular mimicry phenomena within their hosts. Why shouldsevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) not be considered one of these?Information in this short review suggests that it might be so and, thus, encourages research aimingat testing this possibility. We propose, as a working hypothesis, that the virus induces antibodiesand that some of them crossreact with host's antigens, thus eliciting autoimmune phenomena withdevasting consequences in various tissues and organs.
View Article and Find Full Text PDFMolecular chaperones, many of which are heat shock proteins (Hsps), are components of the chaperoning system and when defective can cause disease, the chaperonopathies. Chaperone-gene variants cause genetic chaperonopathies, whereas in the acquired chaperonopathies the genes are normal, but their protein products are not, due to aberrant post-transcriptional mechanisms, e.g.
View Article and Find Full Text PDFInt J Immunopathol Pharmacol
December 2017
HSP60 has been implicated in chronic inflammatory disease pathogenesis, including chronic obstructive pulmonary disease (COPD), but the mechanisms by which this chaperonin would act are poorly understood. A number of studies suggest a role for extracellular HSP60, since it can be secreted from cells and bind Toll-like receptors; however, the effects of this stimulation have never been extensively studied. We investigated the effects (pro- or anti-inflammatory) of HSP60 in human bronchial epithelial cells (16-HBE) alone and in comparison with oxidative, inflammatory, or bacterial challenges.
View Article and Find Full Text PDFJ Inorg Biochem
May 2017
Cell survival and proliferation are central to carcinogenesis, involving various mechanisms among which those that impede apoptosis are important. In this, the role of the molecular chaperone Hsp60 is unclear since it has been reported that it can be both, pro- or anti-apoptotic. A solution to this riddle is crucial to the development of anti-cancer therapies targeting Hsp60.
View Article and Find Full Text PDFCell Stress Chaperones
September 2016
Large bowel carcinogenesis involves accumulation of genetic alterations leading to transformation of normal mucosa into dysplasia and, lastly, adenocarcinoma. It is pertinent to elucidate the molecular changes occurring in the pre-neoplastic lesions to facilitate early diagnosis and treatment. Heat shock proteins (Hsps), many of which are molecular chaperones, are implicated in carcinogenesis, and their variations with tumor progression encourage their study as biomarkers.
View Article and Find Full Text PDFSci Rep
January 2016
Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus.
View Article and Find Full Text PDF