We focus on the design, optimization, fabrication, and testing of fiber Bragg grating (FBG) cantilever beam-based accelerometers to measure vibrations from active seismic sources in the external environment. These FBG accelerometers possess several advantages, such as multiplexing, immunity to electromagnetic interference, and high sensitivity. Finite Element Method (FEM) simulations, calibration, fabrication, and packaging of the simple cantilever beam-based accelerometer based on polylactic acid (PLA) are presented.
View Article and Find Full Text PDFThis study aimed to monitor the aerobic bioremediation of diesel oil-contaminated soil by measuring: a) the CO production; 2) the fluorescein production; 3) the residual diesel oil concentration. Moreover, the complex dielectric permittivity was monitored through an open-ended coaxial cable. Several microcosms were prepared, changing the water content (u% = 8-15% by weight), the carbon to nitrogen ratio (C/N = 20-450), and the soil amount (200 and 800 g of dry soil).
View Article and Find Full Text PDFThis paper reviews the application of the algorithm particle swarm optimization (PSO) to perform stochastic inverse modeling of geophysical data. The main features of PSO are summarized, and the most important contributions in several geophysical fields are analyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies that have been adopted to model the Earth's subsurface and then to undertake a critical evaluation of their benefits and limitations.
View Article and Find Full Text PDFIn the bioremediation field, geophysical techniques are commonly applied, at lab scale and field scale, to perform the characterization and the monitoring of contaminated soils. We propose a method for detecting the dielectric properties of contaminated soil during a process of bioremediation. An open-ended coaxial probe measured the complex dielectric permittivity (between 0.
View Article and Find Full Text PDFThe monitoring of the effects of geohazards on pipelines can be addressed by optical fiber Bragg gratings (FBGs). They are sensitive to strain and bending, and are installed on the external surface of pipelines at discrete locations. A joint approach of theoretical analysis and laboratory experiments is useful to check the reliability of the performance of this technology.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2020
We applied a generalized SEIR epidemiological model to the recent SARS-CoV-2 outbreak in the world, with a focus on Italy and its Lombardy, Piedmont, and Veneto regions. We focused on the application of a stochastic approach in fitting the model parameters using a Particle Swarm Optimization (PSO) solver, to improve the reliability of predictions in the medium term (30 days). We analyzed the official data and the predicted evolution of the epidemic in the Italian regions, and we compared the results with the data and predictions of Spain and South Korea.
View Article and Find Full Text PDFTracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test.
View Article and Find Full Text PDFThe characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination.
View Article and Find Full Text PDFCharacterization of aged hydrocarbon-contaminated sites is often a challenge due to the heterogeneity of subsurface conditions. Geoelectrical methods can aid in the characterization of such sites due to their non-invasive nature, but need to be supported by geochemical and microbiological data. In this study, a combination of respective methods was used to characterize an aged light non-aqueous phase liquid-contaminated site, which was the scene of a crude oil blow-out in 1994.
View Article and Find Full Text PDF