Publications by authors named "Alberto Girlando"

Polarized low-frequency Raman microscopy and a posteriori dispersion-corrected density functional simulations are combined to investigate the lattice vibrations of the α, β, and γ polymorphs of the model organic semiconductor quinacridone, which are known to display different optical and electronic properties. The comparison between experiments and calculations allows for unambiguous mode assignment and identification of the scattering crystal faces. Conversely, the agreement between simulations and experiments validates the adopted computational methods, which correctly describe the intermolecular interaction of the molecular material.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the synthesis and characterization of a novel electron donor-acceptor dyad composed of a polychlorotriphenylmethyl radical linked to a tetrathiafulvalene unit via a π-conjugated bridge.
  • The study evaluates intramolecular electron transfer and magnetic properties using various spectroscopy methods and finds that the radical dyad shows unique self-assembly into a supramolecular structure with distinct donor and acceptor areas.
  • Temperature-dependent X-ray crystallographic analysis reveals that the molecules within the crystal evolve differently in their electronic delocalization as temperature decreases.
View Article and Find Full Text PDF

The paper reports a complete analysis of the phonon structure of crystalline picene, a recently announced organic semiconductor. Both lattice and intramolecular vibrations are investigated. An exhaustive assignment of lattice phonons is obtained through polarized Raman spectra assisted by lattice dynamics calculations based on a well tested atom-atom potential model.

View Article and Find Full Text PDF

The computational protocol we have developed for the calculation of local (Holstein) and non-local (Peierls) carrier-phonon coupling in molecular organic semiconductors is applied to both the low temperature and high temperature bulk crystalline phases of pentacene. The electronic structure is calculated by the semimpirical INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization) method. In the phonon description, the rigid molecule approximation is removed, allowing mixing of low-frequency intra-molecular modes with inter-molecular (lattice) phonons.

View Article and Find Full Text PDF

Blue amplified spontaneous emission at room temperature is demonstrated from the exposed face of the strongly emitting organic semiconductor 1,1,4,4-tetraphenyl-1,3-butadiene in single crystal form. The symmetry of the crystal and calculation of lattice sums indicate the J-type organization of the molecular transition moments. The minimum in the lowest exciton dispersion branch, from which emission takes place, is found at the edge of the Brillouin zone leading to a dominant vibronic emission since the zero-phonon line is forbidden.

View Article and Find Full Text PDF

Molecular dynamics simulations are presented for "bulklike" and "filmlike" monolayers of pentacene deposited on a slab of amorphous silica. The two simulated systems, which mainly differ in the tilt angle between the pentacene molecules and the silica surface, exhibit structural and energetic properties that match the available measurements. The bulklike monolayer, the structure of which corresponds to that of the low-temperature polymorph of crystalline pentacene, is stable.

View Article and Find Full Text PDF
Article Synopsis
  • The study reports on low-frequency Raman spectra of the organic semiconductor alpha-quaterthiophene at temperatures of 300 K and 10 K, comparing low-temperature and high-temperature polymorphs.
  • It employs polarized spectra and quasi-harmonic lattice dynamics calculations to analyze lattice phonon dynamics and distinguish between the two polymorphic phases spectroscopically.
  • Additionally, Raman mapping is utilized to assess the purity of the different phases in the material.
View Article and Find Full Text PDF

Using sexithiophene as a benchmark compound, we present a very effective strategy for searching the potential energy minima of a crystalline material, described in terms of rigid molecules with Coulombic and atom-atom interactions. The strategy involves uniform sampling of the many-body energy hypersurface, mechanical identification of all constraints deriving from the crystallographic symmetry, and a "sight-resight" method, originally introduced in wildlife ecology, for assessing the completeness of the search. Thousands of distinct potential energy minima, with a surprising variety of structural arrangements, are identified for sexithiophene.

View Article and Find Full Text PDF

We present a strategy for comparing the global properties of competing potential models. By systematically sampling the potential energy surface of crystalline tetracene, we assess how the number, energy and structure of its minima are modified by switching on (or off) the Coulombic interactions. The increased complexity of the Coulombic potential leads to a more "rugged" potential energy surface with a larger number of minima, but the effect is not large.

View Article and Find Full Text PDF

Diffuse x-ray data for mixed-stack organic charge-transfer crystals approaching the neutral-ionic phase transition can be quantitatively explained as due to the softening of the optical phonon branch. The interpretation is fully consistent with vibrational spectra, and underlines the importance of electron-phonon coupling in low-dimensional systems with delocalized electrons.

View Article and Find Full Text PDF

We have combined DFT calculations with single-crystal polarized infrared spectra to reinvestigate the assignment of the C=C antisymmetric stretching mode b(2u)nu(18) of p-chloranil (CA). The frequency of this mode indeed seems to display a nonlinear dependence on the average charge on the CA molecule (rho), at variance with the behavior of the antisymmetric C=O stretching frequency. The DFT calculations show that the origin of the problem is a drastic, 2 orders of magnitude decrease of the infrared intensity of the C=C antisymmetric stretching upon electron addition.

View Article and Find Full Text PDF

We report visible, Raman, and infrared spectra of self-assembled monolayers (SAMs) formed by the donor-(pi-bridge)-acceptor chromophore, Z-beta-[N-(omega-acetylthioalkyl)-4-quinolinium]-alpha-cyano-4-styryldicyanomethanide (CH3CO-S-CnH2n-Q3CNQ where n=8, 10), on gold-coated substrates. The data are compared with the spectra collected for the same compound in solution and in the solid state, and with those obtained for a Langmuir-Blodgett (LB) monolayer of C16H33-Q3CNQ deposited on gold. Spectral analysis confirms that in solution, in the solid state and in the LB film the chromophore has a zwitterionic (D+-pi-A-) ground state.

View Article and Find Full Text PDF

We have systematically sampled the potential energy surface of crystalline tetracene to identify its local minima. These minima represent all possible stable configurations and constitute the "inherent structures" of the system. The crystal is described in terms of rigid molecules with Coulombic and atom-atom interactions.

View Article and Find Full Text PDF

Novel fused donor-acceptor dyad (TTF-Q or D-A) and acceptor-donor-acceptor triad (Q-TTF-Q or A-D-A) incorporating the donor tetrathiafulvalene (TTF) and the acceptor p-benzoquinone (Q) have been synthesized. The solution UV-vis spectra of these molecules display a low-energy absorption band that is attributed to an intramolecular charge transfer between both antagonistic units. The presence of reversible oxidation and reduction waves for the donor and acceptor moieties was shown by cyclic voltammetry, in agreement with the ratio TTF/quinone(s) units.

View Article and Find Full Text PDF

We have performed a lattice dynamics calculation to compute the "inherent structures" of minimum potential energy for pentacene, starting from available X-ray data. The calculation shows that two distinct bulk crystalline phases of pentacene exist, with very subtle structural differences but clearly different phonon spectra. The method of crystal growth (from solution or vapor) is not the determining factor for obtaining either structure.

View Article and Find Full Text PDF