Publications by authors named "Alberto Gasco"

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as "unconventional" therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative therapeutic modalities. Among ROS and RNS, peroxynitrite (ONOO) plays a dominant role in chemistry and biology in view of its potent oxidizing power and cytotoxic action. We have designed and synthesized a molecular hybrid based on benzophenothiazine as a red light-harvesting antenna joined to an -nitroso appendage through a flexible spacer.

View Article and Find Full Text PDF

We herein report a study on a set of hybrid compounds in which 3-R-substituted furoxan moieties (R = CH, CONH, CN, SOCH), endowed with varying NO-releasing capacities, are joined to a mitochondrial probe, rhodamine B. Each product has been investigated for its ability to release NO both in physiological solution, in the presence of cysteine, and in A549 lung adenocarcinoma cancer cells. The cytotoxicity of all the products against the aforementioned cancer cells has been assessed, including the structurally related compounds with no mitochondrial targeting, which were taken as a reference.

View Article and Find Full Text PDF

A novel molecular hybrid has been designed and synthesized in which acridine orange (AO) is covalently linked to an N-nitrosoaniline derivative through an alkyl spacer. Photoexcitation of the AO antenna with the highly biocompatible green light results in intense fluorescence emission and triggers NO detachment from the N-nitroso appendage via an intramolecular electron transfer. The presence of the AO moiety encourages the binding with DNA through both external and partially intercalative fashions, depending on the DNA:molecular hybrid molar ratio.

View Article and Find Full Text PDF

We report for the first time a NO photodonor (NOPD) operating with the widely used chemotherapeutic agent doxorubicin (DOX) as the light-harvesting antenna. This permits NO uncaging from an N-nitroso appendage upon selective excitation of DOX with highly biocompatible green light, without precluding its typical red emission. This NOPD effectively binds DNA and photodelivers NO nearby, representing an intriguing candidate for potential multimodal therapeutic applications based on the combination of DOX and NO.

View Article and Find Full Text PDF

The engineering of photosensitizers (PS) for photodynamic therapy (PDT) with nitric oxide (NO) photodonors (NOPD) is broadening the horizons for new and yet to be fully explored unconventional anticancer treatment modalities that are entirely controlled by light stimuli. In this work, we report a tailored boron-dipyrromethene (BODIPY) derivative that acts as a PS and a NOPD simultaneously upon single photon excitation with highly biocompatible green light. The photogeneration of the two key species for PDT and NOPDT, singlet oxygen (O) and NO, has been demonstrated by their direct detection, while the formation of NO is shown not to be dependent on the presence of oxygen.

View Article and Find Full Text PDF

Two novel NO photodonors (NOPDs) based on BODIPY and Rhodamine antennae activatable with the highly biocompatible green light are reported. Both NOPDs exhibit considerable fluorescence emission and release NO with remarkable quantum efficiencies. The combination of the photoreleasing and emissive performance for both compounds is superior to those exhibited by other NOPDs based on similar light-harvesting centres, making them very intriguing for image-guided phototherapeutic applications.

View Article and Find Full Text PDF

Doxorubicin (dox) is one of the first-line drug in osteosarcoma treatment but its effectiveness is limited by the efflux pump P-glycoprotein (Pgp) and by the onset of cardiotoxicity. We previously demonstrated that synthetic doxs conjugated with a HS-releasing moiety (Sdox) were less cardiotoxic and more effective than dox against Pgp-overexpressing osteosarcoma cells. In order to increase the active delivery to tumor cells, we produced hyaluronic acid (HA)-conjugated liposomes containing Sdox (HA-Lsdox), exploiting the abundance of the HA receptor CD44 in osteosarcoma.

View Article and Find Full Text PDF

Combination of photosensitizers (PS) for photodynamic therapy with NO photodonors (NOPD) is opening intriguing horizons towards new and still underexplored multimodal anticancer and antibacterial treatments not based on "conventional" drugs and entirely controlled by light stimuli. In this contribution, we report an intriguing molecular hybrid based on a BODIPY light-harvesting antenna that acts simultaneously as PS and NOPD upon single photon excitation with the highly biocompatible green light. The presented hybrid offers a combination of superior advantages with respect to the other rare cases reported to date, meeting most of the key criteria for both PSs and NOPDs in the same molecular entity such as: (i) capability to generate O and NO with single photon excitation of biocompatible visible light, (ii) excellent O quantum yield and NO quantum efficiency, (iii) photogeneration of NO independent from the presence of oxygen, (iv) large light harvesting properties in the green region.

View Article and Find Full Text PDF

Doxorubicin is one of the most effective drugs for the first-line treatment of high-grade osteosarcoma. Several studies have demonstrated that the major cause for doxorubicin resistance in osteosarcoma is the increased expression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). We recently identified a library of HS-releasing doxorubicins (Sdox) that were more effective than doxorubicin against resistant osteosarcoma cells.

View Article and Find Full Text PDF

A few compounds in which the nitric oxide (NO) photodonor N-[4-nitro-3-(trifluoromethyl)phenyl]propane-1,3-diamine is joined to the mitochondria-targeting alkyltriphenylphosphonium moiety via flexible spacers of variable length were synthesized. The lipophilicity of the products was evaluated by measuring their partition coefficients in n-octanol/water. The obtained values, markedly lower than those calculated, are consistent with the likely collapsed conformation assumed by the compounds in solution, as suggested by molecular dynamics simulations.

View Article and Find Full Text PDF

Drug efflux transporters, in particular P-glycoprotein (Pgp), limit the success of chemotherapy. We previously found that synthetic doxorubicin conjugated with nitric oxide (NO)-releasing group overcomes resistance by inducing a NO-mediated inhibition of Pgp. Here we produced the first liposomal formulations of this nitrooxy-doxorubicin decorated with folic acid (FA), termed LNDF, in order to improve their active targeting against Pgp-expressing tumors.

View Article and Find Full Text PDF

The design, synthesis, spectroscopic and photochemical properties, and biological evaluation of a novel molecular hybrid that is able to deliver nitric oxide (NO) into mitochondria are reported. This molecular conjugate unites a tailored o-CF -p-nitroaniline chromophore, for photo-regulated NO release, and a rhodamine moiety, for mitochondria targeting, in the same molecular skeleton via an alkyl spacer. A combination of steady-state and time-resolved spectroscopic and photochemical experiments demonstrate that the two chromogenic units preserve their individual photophysical and photochemical properties in the conjugate quite well.

View Article and Find Full Text PDF

Using a facile synthetic route, an organic NO release agent based on a BODIPY light-harvesting antenna was devised. This compound is stable in the dark and delivers NO under photoexcitation with biologically favorable green light. Temporally regulated vasodilation capability is demonstrated on rat aorta by green-light-induced NO release.

View Article and Find Full Text PDF

Nitric oxide (NO) release from a suitable NO photodonor () can be fine-tuned by visible light stimuli at doses that are not toxic to cells but that inhibit several efflux pumps; these are mainly responsible for the multidrug resistance of the anticancer agent doxorubicin (). The strategy may thus increase toxicity against resistant cancer cells. Moreover, a novel molecular hybrid covalently joining and showed similar increased toxicity toward resistant cancer cells and, in addition, lower cardiotoxicity than .

View Article and Find Full Text PDF

A small series of water-soluble NO-donor furoxans bearing a basic center at the 4-position, having a wide lipophilic-hydrophilic balance range, and endowed with different NO-release capacities, were synthesized and characterized. Selected members were studied for their IOP-lowering activity in the transient ocular hypertensive rabbit model at 1% dose. The most effective IOP-lowering products were compounds 3 and 7, whose activity 60min after administration was similar to that of Timolol.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) is a well-known membrane transporter expressed in a number of strategic biological barriers, where it exerts a protective effect of paramount importance. Conversely it is one of the main causes of multidrug resistance (MDR), being capable of effluxing many chemotherapeutics. In a development of previous research, a small library of compounds was created conjugating diversely substituted furazan rings with MC70, a well-known P-gp inhibitor.

View Article and Find Full Text PDF

Doxorubicin (DOXO) is one of the most effective antineoplastic agents in clinical practice. Its use is limited by acute and chronic side effects, in particular by its cardiotoxicity and by the rapid development of resistance to it. As part of a program aimed at developing new DOXO derivatives endowed with reduced cardiotoxicity, and active against DOXO-resistant tumor cells, a series of H2S-releasing DOXOs (H2S-DOXOs) were obtained by combining DOXO with appropriate H2S donor substructures.

View Article and Find Full Text PDF

The design, synthesis, photochemical properties, and biological evaluation of a novel photoactivatable bichromophoric conjugate are reported. The compound 1, [4-(4,4-difluoro-2,6-diiodo-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl)-N-(3-((4-nitro-3-(trifluoromethyl)phenyl)amino)propyl)butanamide] combines a 2,6-diiodo-1,3,5,7-tetramethyl BODIPY derivative as singlet oxygen ((1) O2 ) photosensitizer and 4-nitro-3-(trifluoromethyl)aniline (NOPD) as nitric oxide (NO) photodonor, joined by an alkyl spacer. These two chromogenic units absorb in distinct regions of the visible spectrum, and their individual photochemical properties are conserved in the molecular conjugate.

View Article and Find Full Text PDF

Hybrid products in which the dihydroartemisinin scaffold is combined with NO-donor furoxan and NONOate moieties have been synthesized and studied as potential tools for the treatment of cerebral malaria (CM). The designed products were able to dilate rat aorta strips precontracted with phenylephrine with a NO-dependent mechanism. All hybrid compounds showed preserved antiplasmodial activity in vitro and in vivo against Plasmodium berghei ANKA, comparable to artesunate and artemether.

View Article and Find Full Text PDF

Some symmetrical and unsymmetrical thiacarbocyanines bearing NO-donor nitrooxy and furoxan moieties were synthesized and studied as candidate anti-Alzheimer's drugs. All products activated soluble guanylate cyclase (sGC) in a dose-dependent manner, depending on the presence in their structures of NO-donor groups. None displayed toxicity when tested at concentrations below 10 μM on human brain microvascular endothelial cells (hCMEC/D3).

View Article and Find Full Text PDF

A series of furazan and furoxan sulfonamides were prepared and studied for their ability to inhibit human carbonic anhydrase (CA, EC 4.2.1.

View Article and Find Full Text PDF

A series of NO-donor praziquantel hybrid compounds was obtained by combining praziquantel (PZQ) and furoxan moieties in a single entity. NO-donor properties of the furoxan derivatives were evaluated by detecting nitrite after incubation of the products in 7.4 pH buffered solution in the presence of L-cysteine.

View Article and Find Full Text PDF

The NO-donor histone deacetylase inhibitor 2, formally obtained by joining Entinostat 1, a moderately selective Class I histone deacetylases (HDACs) inhibitor, to a 4-(methylaminomethyl)furoxan-3-carbonitrile scaffold, is described and its preliminary biological profile discussed. This hybrid regulates Classes I and II HDACs. Nitric oxide (NO) released by the compound activates soluble guanylate cyclase (sGC), causing Class II nuclear shuttling and chromatin modifications, with consequences on gene expression.

View Article and Find Full Text PDF

Substitution of the cyano-NNO-azoxy moiety (NC-N=(O)N-) for the nitroso group in NU6027, a potent and selective CDK2 inhibitor, affords a compound with slightly improved potency and comparable selectivity profile. A molecular modelling study indicates for this new scaffold a binding mode similar to the one adopted by other purine and pyrimidine analogues, and suggests a relevant role for a conserved water molecule in stabilizing the bioactive pose of this and other pyrimidine ligands. The introduction of aminosulfonylphenyl substituents on the 2-amino group of the pyrimidine increased the CDK2 inhibitory potency by two orders of magnitude, while maintaining the same degree of selectivity.

View Article and Find Full Text PDF