The present study aimed to i) assess the disintegration of a novel bio-packaging during aerobic composting (2 and 6 % tested concentrations) and evaluate the resulting compost ii) analyse the ecotoxicity of bioplastics residues on earthworms; iii) study the microbial communities during composting and in 'earthworms' gut after their exposure to bioplastic residues; iv) correlate gut microbiota with ecotoxicity analyses; v) evaluate the chemico-physical characterisation of bio-packaging after composting and earthworms' exposure. Both tested concentrations showed disintegration of bio-packaging close to 90 % from the first sampling time, and compost chemical analyses identified its maturity and stability at the end of the process. Ecotoxicological assessments were then conducted on Eisenia fetida regarding fertility, growth, genotoxic damage, and impacts on the gut microbiome.
View Article and Find Full Text PDFIn this work, a multivariate approach was utilized for gaining some insights into the processing-structure-properties relationships in polyethylene-based blends. In particular, two high-density polyethylenes (HDPEs) with different molecular weights were melt-compounded using a twin-screw extruder, and the effects of the screw speed, processing temperature and composition on the microstructure of the blends were evaluated based on a Design of Experiment-multilinear regression (DoE-MLR) approach. The results of the thermal characterization, interpreted trough the MLR (multilinear regression) response surfaces, demonstrated that the composition of the blends and the screw rotation speed are the two most important parameters in determining the crystallinity of the materials.
View Article and Find Full Text PDFIn this study, a nanocomposite based on a heterophasic polypropylene copolymer containing 5 wt% of nanoclays and 3 wt% of compatibilizer was formulated via melt compounding to obtain a material suitable for Fused Filament Fabrication (FFF) processing with enhanced flame-retardant properties. From rheological analyses, the nanocomposite showed an important increase in the non-Newtonian behavior, and, therefore, improved FFF printability compared to the pristine PP COPO. A filament with suitable characteristics for FFF was produced using a single-screw extruder and subsequently 3D printed.
View Article and Find Full Text PDFIn this paper, the possibility of detecting polymers in plastic mixtures and extruded blends has been investigated. Pyrolysis-gas chromatography/mass spectrometry (py-GC/MS) allows researchers to identify multicomponent mixtures and low amounts of polymers without high spatial resolution, background noise and constituents mix interfering, as with molecular spectrometry techniques normally used for this purpose, such as Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy and differential scanning calorimetry (DSC). In total, 15 solid mixtures of low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyamide (PA) and polycarbonate (PC) in various combinations have been qualitatively analyzed after choosing their characteristic pyrolysis products and each polymer has been detected in every mix; thus, in extruded blends of high-density polyethylene (HDPE), PP and PS had varying weight percentages of the individual constituents ranging from 10 up to 90.
View Article and Find Full Text PDFIn the context of polymer-based nanocomposites containing layered nanofillers, the achievement of good extents of dispersion and distribution of the embedded nanoparticles and, even more, the obtainment of intercalated and/or exfoliated structures through melt compounding still represents a persistent challenge, especially in the case of anionic layered double hydroxides (LDHs)-containing systems and non-polar polymeric matrices. In this work, a simulation approach is proposed to evaluate the influence of the processing conditions on the morphology of polypropylene (PP)-based nanocomposites containing organomodified LDHs. In particular, the effect of the screw rotation speed and the feed rate on the final microstructure of the materials formulated through melt compounding in a twin-screw extruder was assessed.
View Article and Find Full Text PDFIn this study, composites based on a heterophasic polypropylene (PP) copolymer containing different loadings of micro-sized (i.e., talc, calcium carbonate, and silica) and nano-sized (i.
View Article and Find Full Text PDFPoly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB)-based nanocomposite films were prepared with bio-based additives (CNCs and ChNCs) and oligomer lactic acid (OLA) compatibilizer using extrusion and then blown to films at pilot scale. The aim was to identify suitable material formulations and nanocomposite production processes for film production at a larger scale targeting food packaging applications. The film-blowing process for both the PLA-PHB blend and CNC-nanocomposite was unstable and led to non-homogeneous films with wrinkles and creases, while the blowing of the ChNC-nanocomposite was stable and resulted in a smooth and homogeneous film.
View Article and Find Full Text PDFPolymers (Basel)
April 2022
Fused deposition modeling (FDM) is one of the most commonly used commercial technologies of materials extrusion-based additive manufacturing (AM), used for obtaining 3D-printed parts using thermoplastic polymers. Notwithstanding the great variety of applications for FDM-printed objects, the choice of materials suitable for processing using AM technology is still limited, likely due to the lack of rapid screening procedures allowing for an efficient selection of processable polymer-based formulations. In this work, the rheological behavior of several 3D-printable, commercially available poly(lactic acid)-based filaments was accurately characterized.
View Article and Find Full Text PDFBioplastics may be collected in the bio-waste treatment, which is often composed of anaerobic digestion and subsequent aerobic composting of the digestates. The aim of this study was to evaluate the degradability of polylactic acid (PLA) and starch-based bioplastics (SBB) spoons under industrial conditions. Biomethane potential (BMP) was measured and biogas production was monitored, while the quality of composts was assessed by phytotoxicity and ecotoxicity tests.
View Article and Find Full Text PDFMaterials (Basel)
October 2021
Biocompatible and biodegradable polymers represent the future in the manufacturing of medical implantable solutions. As of today, these are generally manufactured with metallic components which cannot be naturally absorbed within the human body. This requires performing an additional surgical procedure to remove the remnants after complete rehabilitation or to leave the devices in situ indefinitely.
View Article and Find Full Text PDFIn this work, three biochars, deriving from soft wood, oil seed rape, and rice husk and differing as far as the ash content is considered (2.3, 23.4, and 47.
View Article and Find Full Text PDFIn this paper, we study the correlation between the dielectric behavior of polypropylene/multi-walled carbon nanotube (PP/MWCNT) nanocomposites and the morphology with regard to the crystalline structure, nanofiller dispersion and injection molding conditions. As a result, in the range of the percolation threshold the dielectric behavior shifts to a more frequency-independent behavior, as the mold temperature increases. Moreover, the position further from the gate appears as the most conductive.
View Article and Find Full Text PDFIn this work, fire-retardant systems consisting of graphene nanoplatelets (GNPs) and dispersant agents were designed and applied on polyethylene terephthalate (PET) foam. Manual deposition from three different liquid solutions was performed in order to create a protective coating on the specimen's surface. A very low amount of coating, between 1.
View Article and Find Full Text PDFIn a singular period, such as during a pandemic, the use of personal protective masks can become mandatory for all citizens in many places worldwide. The most used device is the disposable mask that, inevitably, generates a substantial waste flow to send to incineration or landfill. The article examines the most diffused type of disposable face mask and identifies the characteristic of the constituent materials through morphological, chemical, physical, and thermal analyses.
View Article and Find Full Text PDFPolymers (Basel)
October 2020
The purpose of this work was to evaluate and improve the flammability and combustion behavior of the polyethylene-based material obtained from the recycling of Tetra Pak (PEAL) to widen its use to applications where these properties are required. Firstly, its thermal stability was investigated with thermogravimetric analysis, resulting in an enhancement in the main degradation step temperature (from 385 °C to 421 °C) due to the presence of the aluminum-flakes. Then, to improve the poor flammability (HB in UL-94 test) and combustion behavior (Fire Performance Index of 0.
View Article and Find Full Text PDFPolypropylene (PP) / multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt-mixing and used to manufacture samples by injection molding. The effect of processing conditions on the crystallinity and electrical resistivity was studied. Accordingly, samples were produced varying the mold temperature and injection rate, and the DC electrical resistivity was measured.
View Article and Find Full Text PDFMicromachines (Basel)
March 2020
In this research paper, we reported the synthesis of biochar-based composites using biochar derived from exhausted tea leaves and polypropylene. The resulting materials were deeply characterized investigating mechanical (dynamic mechanical thermal analysis), thermal (thermogravimetrical analysis and differential scanning calorimetry), morphological (field emission scanning microscopy) and electrical properties vs. temperature.
View Article and Find Full Text PDFThe purpose of this work was to formulate a fully bio-based blend with superior properties, based on two immiscible polymers: polylactic acid (PLA) and poly-hydroxy butyrate (PHB). To improve the miscibility between the polymeric phases, two different kinds of compatibilizers with a different chemical structure were used, namely, an ethylene oxide/propylene oxide block copolymer in the form of flakes and a mixture of two liquid surfactants with a variable lipophilic-hydrophilic index. The morphology of the blends and their thermal, mechanical, and rheological behavior were evaluated, aiming at assessing the influence of the selected compatibilizers on the microstructure and final properties of the systems.
View Article and Find Full Text PDFPolydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers.
View Article and Find Full Text PDFThis work deals with the use of hydrotalcite nanoparticle post-diffusion in layer by layer (LbL) coatings with the aim of improving their flame retardant action on cotton. The selected LbL components, which encompass polydiallyldimethylammonium chloride and deoxyribonucleic acid, aim at the deposition of an intumescent coating. Infrared spectra pointed out a super-linear growth of the investigated assembly, indicating the ability to deposit thick coatings while maintaining a relatively low deposition number.
View Article and Find Full Text PDFIsosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake.
View Article and Find Full Text PDFSilica-based assemblies have been deposited on cotton fibres through Layer by Layer technique in order to enhance their flame retardant properties. To this aim, three different deposition procedures (namely, dipping, vertical and horizontal sprays) have been considered and compared. The resulting morphologies of the deposited assemblies have been thoroughly investigated by scanning electron microscopy (SEM) and elemental analysis.
View Article and Find Full Text PDFThe importance of photooxidation in promoting formation of anhydride functional groups and thus promoting hydrolysis/biodegradation of polylactic acid and PLA nanocomposites were elucidated. PLA-based nanocomposites were prepared by adding 5% wt filler content of sodium montmorillonite (ClNa), sodium montmorillonite partially exchanged with Fe(III) (ClFe), organically modified montmorillonite (Cl20A), unmodified sepiolite (SEP), and fumed silica (SiO2). The pure PLA and nanocomposites were UV-light irradiated in artificial accelerated conditions representative of solar irradiation (λ > 300 nm) at 60 °C in air.
View Article and Find Full Text PDFThermally induced processes of CoAPO-34, an aluminophosphate molecular sieve with chabasite-type structure, synthesized in the presence of morpholine as a structure-directing agent and HF as a mineralizing agent, have been studied by in situ X-ray synchrotron powder diffraction augmented with Fourier transform (FT) IR analysis. A time-resolved experiment was performed using a translating imaging plate system. At room temperature, the structure refinement by full-profile Rietveld analysis showed P-1 symmetry and the presence of one Al site with sixfold coordination.
View Article and Find Full Text PDF