Publications by authors named "Alberto Diez-Torrubia"

In the search of novel enzyme-based prodrug approaches to improve pharmacological properties of therapeutic drugs such as solubility and bioavailability, dipeptidyl-peptidase IV (DPP IV, also termed as CD26) enzyme activity provides a previously unexplored successful prodrug strategy. This review covers key aspects of the enzyme useful for the design of CD26-directed prodrugs. The proof-of-concept of this prodrug technology is provided for amine-containing agents by directly linking appropriate di- (or oligo)peptide moieties to a free amino group of a non-peptidic drug through an amide bond which is specifically hydrolized by DPP IV/CD26.

View Article and Find Full Text PDF

We herein report for the first time the successful use of the dipeptidyl peptidase IV (DPPIV/CD26) prodrug approach to guanine derivatives such as the antiviral acyclovir (ACV). The solution- and solid-phase synthesis of the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of acyclovir are reported. The synthesis of the demanding tetrapeptide amide prodrug of ACV 3 was first established in solution and successfully transferred onto solid support by using Ellman's dihydropyran (DHP) resin.

View Article and Find Full Text PDF

A new type of double prodrug of the antiviral family of bicyclic nucleoside analogues (BCNA) bearing cyclization self-cleavage spacers between the Val-Pro dipeptide sequence as well as the parent compound were synthesized and evaluated with regard to activation by the DPPIV/CD26 enzyme and for their stability in human and bovine serum. In buffer solution, carbamate and ester prodrugs were found to be chemically stable. Most prodrugs containing a dipeptidyl linker efficiently converted into the BCNA parent drug.

View Article and Find Full Text PDF

We previously described a novel prodrug approach in which a di- or tetrapeptide moiety is linked to a wide variety of amine-containing drugs through an amide bond, which is specifically cleaved by dipeptidyl peptidase IV (DPPIV/CD26) activity. Herein we report the application of this prodrug approach to a variety of hydroxy-containing drugs (primary, secondary, tertiary, or aromatic hydroxy groups). We designed and studied tripartite prodrugs containing a dipeptide moiety (cleavable by DPPIV/CD26) and a valine as a hetero-bifunctional connector to link the dipeptide to the hydroxy group of the drug through a metabolically labile ester bond.

View Article and Find Full Text PDF

We present the first report of the application of the dipeptidyl peptidase IV (DPPIV/CD26) based prodrug approach to hydroxy-containing drug derivatives. In particular, we applied this strategy to the highly lipophilic antiviral drug family of bicyclic furanopyrimidine nucleoside analogues (BCNA) in order to improve their physicochemical and pharmacokinetic properties. Our stability data demonstrated that the prodrugs efficiently release the parent BCNA drug upon selective conversion by purified DPPIV/CD26 and by soluble DPPIV/CD26 present in bovine, murine, and human serum.

View Article and Find Full Text PDF

Here we explore the applicability of the dipeptidyl peptidase IV (DPPIV/CD26) based prodrug approach to a variety of amine-containing drugs. Efficient procedures have been developed for the synthesis of dipeptide and tetrapeptide amide prodrugs including N-acylation protocols of the exocyclic amino function of cytidine and adenosine nucleosides. Our studies demonstrated that XaaPro dipeptides linked to a free amino group present on an aromatic ring or on a sugar entity are prodrugs that efficiently release the parent drug upon conversion by purified DPPIV/CD26 as well as soluble DPPIV/CD26 in bovine and human serum.

View Article and Find Full Text PDF

Objectives: To progress the anti-varicella-zoster-virus (VZV) aryl bicyclic nucleoside analogues (BCNAs) to the point of Phase 1 clinical trial for herpes zoster.

Methods: A new chromatography-free synthetic access to the lead anti-VZV aryl BCNAs is reported. The anti-VZV activity of lead Cf1743 was evaluated in monolayer cell cultures and organotypic epithelial raft cultures of primary human keratinocytes.

View Article and Find Full Text PDF

A novel prodrug approach has been evaluated using the anti-HIV-active TSAO molecule as the prototype drug to prove the kinetics with purified enzyme and the principles of conversion to the parent compound in sera and cell culture. When a variety of tetrapeptidyl amide prodrugs of NAP-TSAO were synthesized and exposed to purified dipeptidyl-peptidase IV (DPPIV/CD26) as well as human and bovine sera, they are converted to the parent NAP-TSAO drug in two successive steps by both purified CD26 and human and bovine serum. The efficiency of conversion strongly depends on the nature of the amino acid that has to be cleaved-off from the prodrug molecule.

View Article and Find Full Text PDF