Publications by authors named "Alberto Cini"

A cobalt(II)-based spin triangle shows a significant spin-electric coupling. [Co (pytag)(py) Cl ]ClO ⋅3 py crystallizes in the acentric monoclinic space group P2 . The intra-triangle antiferromagnetic interaction, of the order of ca.

View Article and Find Full Text PDF

Spin crossover complexes are among the most studied classes of molecular switches and have attracted considerable attention for their potential technological use as active units in multifunctional devices. A fundamental step toward their practical implementation is the integration in macroscopic devices adopting hybrid vertical architectures. First, the physical properties of technological interest shown by these materials in the bulk phase have to be retained once they are deposited on a solid surface.

View Article and Find Full Text PDF

The spin crossover (SCO) efficiency of [Fe(bpz)(phen)] (where bpz = bis(pyrazol-1-yl)borohydride and phen = 9,10-phenantroline) molecules deposited on gold substrates was investigated by means of synchrotron Mössbauer spectroscopy. The spin transition was driven thermally, or light induced via the LIESST (light induced excited spin-state trapping) effect. Both sets of measurements show that, once deposited on a gold substrate, the efficiency of the SCO mechanism is modified with respect to molecules in the bulk phase.

View Article and Find Full Text PDF

The possibility to operate on magnetic materials through the application of electric rather than magnetic fields-promising faster, more compact and energy efficient circuits-continues to spur the investigation of magnetoelectric effects. Symmetry considerations, in particular the lack of an inversion centre, characterize the magnetoelectric effect. In addition, spin-orbit coupling is generally considered necessary to make a spin system sensitive to a charge distribution.

View Article and Find Full Text PDF

The use of single molecule magnets (SMMs) as cornerstone elements in spintronics and quantum computing applications demands that magnetic bistability is retained when molecules are interfaced with solid conducting surfaces. Here, we employ synchrotron Mössbauer spectroscopy to investigate a monolayer of a tetrairon(III) (Fe) SMM chemically grafted on a gold substrate. At low temperature and zero magnetic field, we observe the magnetic pattern of the Fe molecule, indicating slow spin fluctuations compared to the Mössbauer timescale.

View Article and Find Full Text PDF

Gold nanorods are attractive for a range of biomedical applications, such as the photothermal ablation and the photoacoustic imaging of cancer, thanks to their intense optical absorbance in the near-infrared window, low cytotoxicity and potential to home into tumors. However, their delivery to tumors still remains an issue. An innovative approach consists of the exploitation of the tropism of tumor-associated macrophages that may be loaded with gold nanorods in vitro.

View Article and Find Full Text PDF