We investigate the ability to discover data assimilation (DA) schemes meant for chaotic dynamics with deep learning. The focus is on learning the analysis step of sequential DA, from state trajectories and their observations, using a simple residual convolutional neural network, while assuming the dynamics to be known. Experiments are performed with the Lorenz 96 dynamics, which display spatiotemporal chaos and for which solid benchmarks for DA performance exist.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2021
In recent years, machine learning (ML) has been proposed to devise data-driven parametrizations of unresolved processes in dynamical numerical models. In most cases, the ML training leverages high-resolution simulations to provide a dense, noiseless target state. Our goal is to go beyond the use of high-resolution simulations and train ML-based parametrization using direct data, in the realistic scenario of noisy and sparse observations.
View Article and Find Full Text PDFWe study prediction-assimilation systems, which have become routine in meteorology and oceanography and are rapidly spreading to other areas of the geosciences and of continuum physics. The long-term, nonlinear stability of such a system leads to the uniqueness of its sequentially estimated solutions and is required for the convergence of these solutions to the system's true, chaotic evolution. The key ideas of our approach are illustrated for a linearized Lorenz system.
View Article and Find Full Text PDF