Publications by authors named "Alberto Bucci"

Nickel-based oxides and oxyhydroxide catalysts exhibit state-of-the-art activity for the sluggish oxygen evolution reaction (OER) under alkaline conditions. A widely employed strategy to increase the gravimetric activity of the catalyst is to increase the active surface area via nanostructuring or decrease the particle size. However, the fundamental understanding about how tuning these parameters influences the density of oxidized species and their reaction kinetics remains unclear.

View Article and Find Full Text PDF

Metal oxides and oxyhydroxides exhibit state-of-the-art activity for the oxygen evolution reaction (OER); however, their reaction mechanism, particularly the relationship between charging of the oxide and OER kinetics, remains elusive. Here, we investigate a series of Mn-, Co-, Fe-, and Zn-doped nickel oxides using UV-vis spectroscopy coupled with time-resolved stepped potential spectroelectrochemistry. The Ni/Ni redox peak potential is found to shift anodically from Mn- < Co- < Fe- < Zn-doped samples, suggesting a decrease in oxygen binding energetics from Mn- to Zn-doped samples.

View Article and Find Full Text PDF

The complex α-[Fe(mcp)(OTf)] (mcp = ,'-dimethyl-,'-bis(pyridin-2-ylmethyl)-cyclohexane-1,2-diamine and OTf = trifluoromethanesulfonate anion) was reported in 2011 by some of us as an active water oxidation (WO) catalyst in the presence of sacrificial oxidants. However, because chemical oxidants are likely to take part in the reaction mechanism, mechanistic electrochemical studies are critical in establishing to what extent previous studies with sacrificial reagents have actually been meaningful. In this study, the complex α-[Fe(mcp)(OTf)] and its analogues were investigated electrochemically under both acidic and neutral conditions.

View Article and Find Full Text PDF

Postmodification of reticular materials with well-defined catalysts is an appealing approach to produce new catalytic functional materials with improved stability and recyclability, but also to study catalysis in confined spaces. A promising strategy to this end is the postfunctionalization of crystalline and robust metal-organic frameworks (MOFs) to exploit the potential of crystal-to-crystal transformations for further characterization of the catalysts. In this regard, two new photocatalytic materials, MOF-520-PC1 and MOF-520-PC2, are straightforwardly obtained by the postfunctionalization of MOF-520 with perylene-3-carboxylic acid (PC1) and perylene-3-butyric acid (PC2).

View Article and Find Full Text PDF

Two imidazolate-based Co-MOFs, IFP-5 and IFP-8 (imidazolate framework Potsdam), with a different peripheral group -R (-Me and -OMe, respectively) have been synthesized by a solvothermal method and tested toward the oxygen evolution reaction (OER). Remarkably, IFP-8 presents much lower overpotentials (319 mV at 10 mA/cm and 490 mV at 500 mA/cm) than IFP-5 toward OER, as confirmed by online gas chromatography measurements (Faradaic yield of O > 99%). Moreover, the system is extraordinarily stable during 120 h, even when used as a catalyst toward the overall water splitting reaction without any sign of fatigue.

View Article and Find Full Text PDF

An efficient heterogenized water oxidation catalyst (2_TiO2 ) has been synthesized by immobilizing the Kläui-type organometallic precursor [Cp*Ir{P(O)(OH)2 }3 ]Na (2, Cp*=1,2,3,4,5-pentamethylcyclopentadienyl ligand) onto rutile TiO2 . Iridium is homogeneously distributed at the molecular and atomic/small cluster level in 2_TiO2 and 2'_TiO2 (solid catalyst recovered after the first catalytic run), respectively, as indicated by STEM-HAADF (scanning transmission electron microscopy - high angle annular dark field) studies. 2'_TiO2 exhibits TOF values up to 23.

View Article and Find Full Text PDF

The reaction of [Cp*Ir(bzpy)NO3 ] (1; bzpy=2-benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water-oxidation catalyst, with several oxidants (H2 O2 , NaIO4 , cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI-MS techniques provided evidence for the formation of many species that all had the intact Ir-bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen-Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η(3) interaction with iridium (2 a).

View Article and Find Full Text PDF