Publications by authors named "Alberto Bosque"

Development of novel therapeutic strategies that reactivate latent HIV and sensitize reactivated cells to apoptosis is crucial towards elimination of the latent viral reservoir. Among the clinically relevant latency reversing agents (LRA) under investigation, the γc-cytokine IL-15 and the superagonist N-803 have been shown to reactivate latent HIV ex vivo and in vivo. However, their clinical benefit can be hindered by IL-15 promoting survival of infected cells.

View Article and Find Full Text PDF

Nonreceptor tyrosine phosphatases (NTPs) play an important role in regulating protein phosphorylation and have been proposed as attractive therapeutic targets for cancer and metabolic diseases. We have previously identified that 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhanced STAT activation upon cytokine stimulation, leading to increased reactivation of latent HIV and effector functions of NK and CD8 T cells. Here, we demonstrate that HODHBt interacted with and inhibited the NTPs PTPN1 and PTPN2 through a mixed inhibition mechanism.

View Article and Find Full Text PDF

The role of different biological variables including biological sex, age, and sex hormones in Human immunodeficiency virus (HIV) cure approaches is not well understood. The γc-cytokine IL-15 is a clinically relevant cytokine that promotes immune activation and mediates HIV reactivation from latency. In this work, we examined the interplay that biological sex, age, and sex hormones 17β-estradiol, progesterone, and testosterone may have on the biological activity of IL-15.

View Article and Find Full Text PDF

Assays to study HIV persistence are crucial to evaluate therapeutic strategies aimed toward an HIV cure. Several assays have been developed to date that rely on the measurement of nucleic acids. In recent years, the advancement of ultrasensitive technologies for the detection of proteins has improved our understanding of the role of translation-competent reservoirs in HIV persistence.

View Article and Find Full Text PDF

Persistent HIV-1 reservoirs of infected CD4 T cells are a major barrier to HIV-1 cure, although the mechanisms by which they are established and maintained remain poorly characterized. To elucidate host cell gene expression patterns that govern virus gene expression, we analyzed viral RNA+ (vRNA) CD4 T cells of untreated simian immunodeficiency virus (SIV)-infected macaques by single-cell RNA sequencing. A subset of vRNA+ cells distinguished by spliced and high total vRNA (7-10% of reads) expressed diminished a component of the Activator protein 1 (AP-1) transcription factor, relative to vRNA-low and -negative cells.

View Article and Find Full Text PDF

In spite of the advances in antiretroviral therapy to treat HIV infection, the presence of a latent reservoir of HIV-infected cells represents the largest barrier towards finding a cure. Among the different strategies being pursued to eliminate or reduce this latent reservoir, the γc-cytokine IL-15 or its superagonist N-803 are currently under clinical investigation, either alone or with other interventions. They have been shown to reactivate latent HIV and enhance immune effector function, both of which are potentially required for effective reduction of latent reservoirs.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy.

View Article and Find Full Text PDF

IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation.

View Article and Find Full Text PDF

Under non-pathological conditions, human γδ T cells represent a small fraction of CD3 T cells in peripheral blood (1-10%). They constitute a unique subset of T lymphocytes that recognize stress ligands or non-peptide antigens through MHC-independent presentation. Major human γδ T cell subsets, Vδ1 and Vδ2, expand in response to microbial infection or malignancy, but possess distinct tissue localization, antigen recognition, and effector responses.

View Article and Find Full Text PDF
Article Synopsis
  • Antiretroviral therapy (ART) does not cure HIV-1 due to persistent latent reservoirs; current research focuses on "shock and kill" strategies to reactivate the virus for immune elimination.
  • Aminobisphosphonates (N-BPs), commonly used for bone diseases, have been shown in recent studies to effectively reactivate latent HIV-1, achieving results similar to established T cell activators.
  • Preliminary findings suggest that N-BPs activate immune responses and induce HIV-1 expression, warranting further research in controlled clinical trials, potentially alongside therapeutic vaccination.
View Article and Find Full Text PDF

Background: Clinical trials of the mRNA coronavirus disease 2019 (COVID-19) vaccines excluded individuals with primary antibody deficiencies.

Objective: To evaluate whether antibody and T-cell responses to mRNA COVID-19 vaccination in patients with common variable immunodeficiency (CVID) and specific antibody deficiency (SAD) were comparable to those in healthy controls.

Methods: We measured antibody responses against the spike glycoprotein and the receptor-binding domain (RBD) in addition to severe acute respiratory syndrome coronavirus 2 specific T-cell responses using peripheral blood mononuclear cells 2 to 8 weeks after the subjects completed the primary 2-dose vaccine series.

View Article and Find Full Text PDF

To investigate Prussian blue nanoparticles (PBNPs) coated with the synthetic analog of dsRNA polyinosinic-polycytidylic acid (polyIC) for their ability to function as HIV latency reversing agents. A layer-by-layer method was used to synthesize polyIC-coated PBNPs (polyIC-PBNPs). PolyIC-PBNPs were stable and monodisperse, maintained the native absorbance properties of both polyIC and PBNPs and were obtained with high nanoparticle collection yield and polyIC attachment efficiencies.

View Article and Find Full Text PDF

Efforts to cure HIV have focused on reactivating latent proviruses to enable elimination by CD8 cytotoxic T-cells. Clinical studies of latency reversing agents (LRA) in antiretroviral therapy (ART)-treated individuals have shown increases in HIV transcription, but without reductions in virologic measures, or evidence that HIV-specific CD8 T-cells were productively engaged. Here, we show that the SARS-CoV-2 mRNA vaccine BNT162b2 activates the RIG-I/TLR - TNF - NFκb axis, resulting in transcription of HIV proviruses with minimal perturbations of T-cell activation and host transcription.

View Article and Find Full Text PDF

Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a sphingolipid modulator of a myriad of cellular processes, and therapeutic targeting of S1P signaling is utilized clinically to treat multiple sclerosis. We have previously shown that functional antagonism of S1P receptors reduces cell-free, cell-to-cell, and latent HIV-1 infection in primary CD4 T cells. In this work, we examined whether targeting sphingosine kinase 1 or 2 (SPHK1/2) to inhibit S1P production would prevent infection using multiple HIV-1 primary isolates and infectious molecular clones.

View Article and Find Full Text PDF

HIV-specific T cells have diminished effector function and fail to control/eliminate the virus. IL-27, a member of the IL-6/IL-12 cytokine superfamily has been shown to inhibit HIV replication. However, whether or not IL-27 can enhance HIV-specific T cell function is largely unknown.

View Article and Find Full Text PDF

Models to study HIV latency have improved our understanding of the mechanisms involved in this process and have helped in the discovery and development of therapeutic strategies to eradicate HIV. Primary cell models are based on the in vitro generation of latently infected cells using CD4T cells isolated from blood, lymph nodes or other lymphoid organs. In this chapter, we describe the generation of HIV latently infected memory CD4T cells using blood naïve CD4T cells from peripheral blood with a phenotype resembling that of central memory CD4T cells.

View Article and Find Full Text PDF

Human immunodeficiency virus-1 (HIV-1) persistence in the presence of antiretroviral therapy (ART) has halted the development of curative strategies. Measuring HIV persistence is complex due to the low frequency of cells containing virus in vivo. Most of the commercially available assays to date measure nucleic acid.

View Article and Find Full Text PDF

The mitochondrial antiviral signaling protein (MAVS) is part of the cell's innate immune mechanism of defense. MAVS mRNA is bicistronic and can give rise to a full length-MAVS and a shorter isoform termed miniMAVS. In response to viral infections, viral RNA can be sensed by the cytosolic RNA sensors retinoic acid-inducible gene I (RIG-I) and/or melanoma differentiation-associated protein 5 (MDA5) and activate NF-κB through interaction with MAVS.

View Article and Find Full Text PDF

HIV persists, despite immune responses and antiretroviral therapy, in viral reservoirs that seed rebound viremia if therapy is interrupted. Previously, we showed that the BCL-2 protein contributes to HIV persistence by conferring a survival advantage to reservoir-harboring cells. Here, we demonstrate that many of the BCL-2 family members are overexpressed in HIV-infected CD4 T cells, indicating increased tension between proapoptotic and prosurvival family members-and suggesting that inhibition of prosurvival members may disproportionately affect the survival of HIV-infected cells.

View Article and Find Full Text PDF

The establishment of HIV-1 latency has hindered an HIV-1 cure. "Shock and Kill" strategies to target this reservoir aim to induce the latent provirus with latency reversing agents (LRAs). However, recent studies have shown that the majority of the intact HIV-1 viral reservoir found in ART-suppressed HIV infected individuals is not inducible.

View Article and Find Full Text PDF

It is unclear what mechanisms govern latent HIV infection in vivo or in primary cell models. To investigate these questions, we compared the HIV and cellular transcription profile in three primary cell models and peripheral CD4+ T cells from HIV-infected ART-suppressed individuals using RT-ddPCR and RNA-seq. All primary cell models recapitulated the block to HIV multiple splicing seen in cells from ART-suppressed individuals, suggesting that this may be a key feature of HIV latency in primary CD4+ T cells.

View Article and Find Full Text PDF