Publications by authors named "Alberto Bonastre"

The in-line determination of chemical parameters in water is of capital importance for environmental reasons. It must be carried out frequently and at a multitude of points; thus, the ideal method is to utilize automated monitoring systems, which use sensors based on many transducers, such as Ion Selective Electrodes (ISE). These devices have multiple advantages, but their management via traditional methods (i.

View Article and Find Full Text PDF

In many water samples, it is important to determine the ammonium concentration in order to obtain an overall picture of the environmental impact of pollutants and human actions, as well as to detect the stage of eutrophization. Ion selective electrodes (ISEs) have been commonly utilized for this purpose, although the presence of interfering ions (potassium and sodium in the case of NH-ISE) represents a handicap in terms of the measurement quality. Furthermore, random malfunctions may give rise to incorrect measurements.

View Article and Find Full Text PDF

This paper proposes and demonstrates the capabilities of a new sensorization system that monitors skin contact between two persons. Based on the intrabody communication standard (802.15.

View Article and Find Full Text PDF

In a constantly evolving world, new technologies such as Internet of Things (IoT) and cloud-based services offer great opportunities in many fields. In this paper we propose a new approach to the development of smart sensors using IoT and cloud computing, which open new interesting possibilities in analytical chemistry. According to IoT philosophy, these new sensors are able to integrate the generated data on the existing IoT platforms, so that information may be used whenever needed.

View Article and Find Full Text PDF

Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized.

View Article and Find Full Text PDF

The Internet of Things (IoT) is, at this moment, one of the most promising technologies that has arisen for decades. Wireless Sensor Networks (WSNs) are one of the main pillars for many IoT applications, insofar as they require to obtain context-awareness information. The bibliography shows many difficulties in their real implementation that have prevented its massive deployment.

View Article and Find Full Text PDF

Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion.

View Article and Find Full Text PDF

Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way.

View Article and Find Full Text PDF

We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes.

View Article and Find Full Text PDF