In this article, we report a detailed study of surface modification of magnetite nanoparticles by means of three different grafting agents, functional for the preparation of magnetic polymer brushes. 3-Aminopropyltriethoxysilane (APTES), 3-chloropropyltriethoxysilane (CPTES), and 2-(4-chlorosulfonylphenyl)ethyltrichlorosilane (CTCS) were chosen as grafting models through which a wide range of polymer brushes can be obtained. By means of accurate thermogravimetric analysis a good control over the amount of immobilized molecules is achieved, and optimal operating conditions for each grafting agent are consequently determined.
View Article and Find Full Text PDFThrough this work, we present self-assembled structures which can be obtained by mixing surface modified dye loaded zeolite L crystals and cationic precursors of a conjugated polymer. The zeolite crystals are modified with anionic end groups which give the former a polyanionic character and allow a polyelectrolytic assembly. Microfluidic forces, introduced during the drying of a drop of water containing both polyelectrolytes casted on a clean glass substrate, and localized adsorption on the single zeolite crystal lead to the formation of micro- and nanofibers of highly ordered zeolite nanocrystals.
View Article and Find Full Text PDFIn this work we report two simple approaches to prepare hybrid thin films displaying a high concentration of zeolite crystals that could be used as active layers in optoelectronic devices. In the first approach, in order to organize nanodimensional zeolite crystals of 40 nm diameter in an electroactive environment, we chemically modify their external surface and play on the hydrophilic/hydrophobic forces. We obtain inorganic nanocrystals that self-organize in honeycomb electroluminescent polymer structures obtained by breath figure formation.
View Article and Find Full Text PDFIn order to understand the factors responsible for the improved efficiency and stability of organic light-emitting diodes (OLEDs) based on poly(9,9-dioctylfluorene) (PFO) when triphenylamine (TPA) is introduced as lateral fluorene substituent, we synthetize mono-disperse fluorene-thiophene oligomers as model compounds. Their blends with different concentrations of the fluorenone containing oligomer are studied in order to verify if only a reduction of ketonic defect sites or also an impeded energy transfer (ET) towards such sites are responsible for the suppression of the green emission band. We show that the introduction of TPA groups leads specifically both to an antioxidant action and a reduced ET towards residual defect sites, thanks to the environmental micro-encapsulation role played by TPA units surrounding the polymer backbone.
View Article and Find Full Text PDFThe amphiphilic block copolymer formed by a hydrophobic body of polystyrene and a hydrophilic head of poly[9,9-di(2-(2-tetrahydropyranyl-oxy)hexyl)fluorene-alt-9,9-dioctylfluorene] was synthesized, and its solution was used to create thin films with ordered pattern of holes, by means of the breath figure technique. These porous films, after a thermal treatment, were found to show ordered aggregates of the pi-conjugated blocks in the place of the cavities. This is probably due to a preorganization of the two different blocks of the copolymer occurring during the breath figure formation, which is driven by the condensation of water microdroplets on the polymer solution, and to a following phase segregation occurring during the thermal annealing.
View Article and Find Full Text PDF