Background: Guidelines suggest a plateau pressure (PPLAT) of 30 cm H(2)O or less for patients with acute respiratory distress syndrome, but ventilation may still be injurious despite adhering to this guideline. The shape of the curve plotting airway pressure versus time (STRESS INDEX) may identify injurious ventilation. The authors assessed accuracy of PPLAT and STRESS INDEX to identify morphological indexes of injurious ventilation.
View Article and Find Full Text PDFPurpose: To assess whether partitioning the elastance of the respiratory system (E (RS)) between lung (E (L)) and chest wall (E (CW)) elastance in order to target values of end-inspiratory transpulmonary pressure (PPLAT(L)) close to its upper physiological limit (25 cmH(2)O) may optimize oxygenation allowing conventional treatment in patients with influenza A (H1N1)-associated ARDS referred for extracorporeal membrane oxygenation (ECMO).
Methods: Prospective data collection of patients with influenza A (H1N1)-associated ARDS referred for ECMO (October 2009-January 2010). Esophageal pressure was used to (a) partition respiratory mechanics between lung and chest wall, (b) titrate positive end-expiratory pressure (PEEP) to target the upper physiological limit of PPLAT(L) (25 cmH(2)O).
The extracorporeal carbon dioxide removal (ECCO(2)R) concept, used as an integrated tool with conventional ventilation, plays a role in adjusting respiratory acidosis consequent to tidal volume (Vt) reduction in a protective ventilation setting. This concept arises from the extracorporeal membrane oxygenation (ECMO) experience. Kolobow and Gattinoni were the first to introduce extracorporeal support, with the intent to separate carbon dioxide removal from oxygen uptake; they hypothesized that to allow the lung to 'rest' oxygenation via mechanical ventilation could be dissociated from decarboxylation via extracorporeal carbon dioxide removal.
View Article and Find Full Text PDFBackground: Tidal hyperinflation may occur in patients with acute respiratory distress syndrome who are ventilated with a tidal volume (VT) of 6 ml/kg of predicted body weight develop a plateau pressure (PPLAT) of 28 < or = PPLAT < or = 30 cm H2O. The authors verified whether VT lower than 6 ml/kg may enhance lung protection and that consequent respiratory acidosis may be managed by extracorporeal carbon dioxide removal.
Methods: PPLAT, lung morphology computed tomography, and pulmonary inflammatory cytokines (bronchoalveolar lavage) were assessed in 32 patients ventilated with a VT of 6 ml/kg.