Publications by authors named "Alberto Bartesaghi"

Article Synopsis
  • The study explores the aggregation process of α-synuclein, a protein linked to Parkinson's Disease and Multiple System Atrophy, and its implications for research.
  • Researchers determined the first atomic structure of mouse α-synuclein fibrils, revealing similarities to fibrils found in human conditions, but with important differences in their properties.
  • The findings indicate that mouse α-synuclein fibrils have altered behaviors, suggesting a need to reevaluate their use in developing diagnostic tools and treatments for related diseases.
View Article and Find Full Text PDF

Cryo-electron tomography allows the routine visualization of cellular landscapes in three dimensions at nanometer-range resolutions. When combined with single-particle tomography, it is possible to obtain near-atomic resolution structures of frequently occurring macromolecules within their native environment. Two outstanding challenges associated with cryo-electron tomography/single-particle tomography are the automatic identification and localization of proteins, tasks that are hindered by the molecular crowding inside cells, imaging distortions characteristic of cryo-electron tomography tomograms and the sheer size of tomographic datasets.

View Article and Find Full Text PDF

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans.

View Article and Find Full Text PDF

Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge.

View Article and Find Full Text PDF

Cryogenic electron tomography (cryo-ET), a method that enables the viewing of biomolecules in near-native environments at high resolution, is rising in accessibility and applicability. Over the past several years, once slow sample preparation and data collection procedures have seen innovations which enable rapid collection of the large datasets required for attaining high resolution structures. Increased data availability has provided a driving force for exciting improvements in cryo-ET data processing methodologies throughout the entire processing pipeline and the development of accessible graphical user interfaces (GUIs) that enable individuals inexperienced in computational fields to convert raw tilt series into 3D structures.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) is an imaging technique that allows the visualization of proteins and macromolecular complexes at near-atomic resolution. The low electron doses used to prevent radiation damage to the biological samples result in images where the power of noise is 100 times stronger than that of the signal. Accurate identification of proteins from these low signal-to-noise ratio (SNR) images is a critical task, as the detected positions serve as inputs for the downstream 3D structure determination process.

View Article and Find Full Text PDF

Single-particle cryo-electron tomography is an emerging technique capable of determining the structure of proteins imaged within the native context of cells at molecular resolution. While high-throughput techniques for sample preparation and tilt-series acquisition are beginning to provide sufficient data to allow structural studies of proteins at physiological concentrations, the complex data analysis pipeline and the demanding storage and computational requirements pose major barriers for the development and broader adoption of this technology. Here, we present a scalable, end-to-end framework for single-particle cryo-electron tomography data analysis from on-the-fly pre-processing of tilt series to high-resolution refinement and classification, which allows efficient analysis and visualization of datasets with hundreds of tilt series and hundreds of thousands of particles.

View Article and Find Full Text PDF

The human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus in the human genome and is activated and expressed in many cancers and amyotrophic lateral sclerosis. We present the immature HERV-K capsid structure at 3.2 Å resolution determined from native virus-like particles using cryo-electron tomography and subtomogram averaging.

View Article and Find Full Text PDF

A significant part of the human genome consists of endogenous retroviruses sequences. Human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus, is activated and expressed in many cancers and amyotrophic lateral sclerosis and possibly contributes to the aging process. To understand the molecular architecture of endogenous retroviruses, we determined the structure of immature HERV-K from native virus-like particles (VLPs) using cryo-electron tomography and subtomogram averaging (cryoET STA).

View Article and Find Full Text PDF

Antibody affinity maturation enables adaptive immune responses to a wide range of pathogens. In some individuals broadly neutralizing antibodies develop to recognize rapidly mutating pathogens with extensive sequence diversity. Vaccine design for pathogens such as HIV-1 and influenza has therefore focused on recapitulating the natural affinity maturation process.

View Article and Find Full Text PDF

Unlabelled: Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional biosynthetic pathways that are absent from humans.

View Article and Find Full Text PDF
Article Synopsis
  • SPINDLY (SPY) is a newly discovered nucleocytoplasmic protein O-fucosyltransferase (POFUT) in Arabidopsis thaliana that plays a crucial role in various developmental processes.
  • The structure of SPY, determined through cryo-electron microscopy, shows it uniquely binds GDP-fucose instead of the typical UDP-GlcNAc, and it forms an antiparallel dimer unlike human counterparts.
  • The N-terminal peptide of SPY contains self-fucosylation sites that inhibit its activity, while specific regions (TPRs 1-5) regulate its function by affecting how it interacts with protein substrates.
View Article and Find Full Text PDF

Single-particle cryo-electron microscopy (cryo-EM) is a powerful imaging modality capable of visualizing proteins and macromolecular complexes at near-atomic resolution. The low electron-doses used to prevent radiation damage to the biological samples, however, result in images where the power of the noise is 100 times greater than the power of the signal. To overcome these low signal-to-noise ratios (SNRs), hundreds of thousands of particle projections are averaged to determine the three-dimensional structure of the molecule of interest.

View Article and Find Full Text PDF

Finding the conditions to stabilize a macromolecular target for imaging remains the most critical barrier to determining its structure by cryo-electron microscopy (cryo-EM). While automation has significantly increased the speed of data collection, specimens are still screened manually, a laborious and subjective task that often determines the success of a project. Here, we present SmartScope, the first framework to streamline, standardize, and automate specimen evaluation in cryo-EM.

View Article and Find Full Text PDF

Tomographic reconstruction of frozen-hydrated specimens followed by extraction and averaging of sub-tomograms has successfully been used to determine the structure of macromolecules in their native environment at resolutions that are high enough to reveal molecular level interactions. The low throughput characteristic of tomographic data acquisition combined with the complex data-analysis pipeline that is required to obtain high-resolution maps, however, has limited the applicability of this technique to favorable samples or to resolutions that are too low to provide useful mechanistic information. Recently, beam image-shift electron cryo-tomography (BISECT), a strategy to significantly accelerate the acquisition of tilt series without sacrificing image quality, was introduced.

View Article and Find Full Text PDF

Protein ubiquitination is an essential process that rapidly regulates protein synthesis, function, and fate in dynamic environments. Within its non-proteolytic functions, we showed that K63-linked polyubiquitinated conjugates heavily accumulate in yeast cells exposed to oxidative stress, stalling ribosomes at elongation. K63-ubiquitinated conjugates accumulate mostly because of redox inhibition of the deubiquitinating enzyme Ubp2; however, the role and regulation of ubiquitin-conjugating enzymes (E2) in this pathway remained unclear.

View Article and Find Full Text PDF

Background And Objective: One of the strengths of single-particle cryo-EM compared to other structural determination techniques is its ability to image heterogeneous samples containing multiple molecular species, different oligomeric states or distinct conformations. This is achieved using routines for in-silico 3D classification that are now well established in the field and have successfully been used to characterize the structural heterogeneity of important biomolecules. These techniques, however, rely on expert-user knowledge and trial-and-error experimentation to determine the correct number of conformations, making it a labor intensive, subjective, and difficult to reproduce procedure.

View Article and Find Full Text PDF

NPR1 is a master regulator of the defence transcriptome induced by the plant immune signal salicylic acid. Despite the important role of NPR1 in plant immunity, understanding of its regulatory mechanisms has been hindered by a lack of structural information. Here we report cryo-electron microscopy and crystal structures of Arabidopsis NPR1 and its complex with the transcription factor TGA3.

View Article and Find Full Text PDF

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (V) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization.

View Article and Find Full Text PDF

Tomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value.

View Article and Find Full Text PDF

The bacterium Francisella tularensis (Ft) is one of the most infectious agents known. Ft virulence is controlled by a unique combination of transcription regulators: the MglA-SspA heterodimer, PigR, and the stress signal, ppGpp. MglA-SspA assembles with the σ-associated RNAP holoenzyme (RNAPσ), forming a virulence-specialized polymerase.

View Article and Find Full Text PDF
Article Synopsis
  • Subpopulations of ribosomes fine-tune protein synthesis in response to oxidative stress, with K63 ubiquitination emerging as a key posttranslational modification affecting ribosome function.
  • Using cryoelectron microscopy, researchers identified 3D structures of K63 ubiquitinated ribosomes from stressed yeast, revealing their unique presence in a polysome arrangement at a specific stage of translation elongation.
  • The study shows that K63 ubiquitin causes structural changes that destabilize important ribosomal proteins, ultimately inhibiting the function of eEF2 and regulating translation during oxidative stress.
View Article and Find Full Text PDF
Article Synopsis
  • Advances in cryo-electron microscopy (cryo-EM) have led to significant discoveries in molecular structures, earning it the title of Method of the Year 2015 and contributing to a Nobel Prize in Chemistry in 2017.
  • The article focuses on the complex computational challenges of reconstructing 3-D molecular structures, utilizing diverse fields such as signal processing, machine learning, and optimization to tackle issues like noise and massive datasets.
  • It introduces two statistical models—multi-reference alignment and multi-target detection—that simplify some aspects of cryo-EM while maintaining crucial features, and explores their connections with mathematical theories like group theory and information theory.
View Article and Find Full Text PDF

The trimeric HIV-1 Envelope protein (Env) mediates viral-host cell fusion via a network of conformational transitions, with allosteric elements in each protomer orchestrating host receptor-induced exposure of the co-receptor binding site and fusion elements. To understand the molecular details of this allostery, here, we introduce Env mutations aimed to prevent CD4-induced rearrangements in the HIV-1 BG505 Env trimer. Binding analysis and single-molecule Förster Resonance Energy Transfer confirm that these mutations prevent CD4-induced transitions of the HIV-1 Env.

View Article and Find Full Text PDF

Voltage-activated potassium (Kv) channels open to conduct K ions in response to membrane depolarization, and subsequently enter non-conducting states through distinct mechanisms of inactivation. X-ray structures of detergent-solubilized Kv channels appear to have captured an open state even though a non-conducting C-type inactivated state would predominate in membranes in the absence of a transmembrane voltage. However, structures for a voltage-activated ion channel in a lipid bilayer environment have not yet been reported.

View Article and Find Full Text PDF