Symbiotic associations with arbuscular mycorrhizal fungi (AMF) offer an effective indirect mechanism to reduce heavy metal (HM) stress; however, it is still not clear which AMF species are more efficient as bioremediating agents. We selected different species of AMF: (Custos); sp. (Aznalcollar); and (Intraradices), in order to study their inoculation in wheat grown in two soils contaminated with two levels of HMs; we tested the phytoprotection potential of the different AMF symbioses, as well as the physiological responses of the plants to HM stress.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi are critical participants in plant nutrition in natural ecosystems and in sustainable agriculture. A large proportion of the phosphorus, nitrogen, sulfur, and transition metal elements that the host plant requires are obtained from the soil by the fungal mycelium and released at the arbuscules in exchange for photosynthates. While many of the plant transporters responsible for obtaining macronutrients at the periarbuscular space have been characterized, the identities of those mediating transition metal uptake remain unknown.
View Article and Find Full Text PDFPlants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We manipulated cooperation in plants and fungal partners to show that plants can detect, discriminate, and reward the best fungal partners with more carbohydrates.
View Article and Find Full Text PDFRoots of most plants in nature are colonized by arbuscular mycorrhizal (AM) fungi. Among the beneficial effects of this symbiosis to the host plant is the transport of water by the AM mycelium from inaccessible soil water resources to host roots. Here, an aquaporin (water channel) gene from an AM fungus (Glomus intraradices), which was named GintAQP1, is reported for the first time.
View Article and Find Full Text PDFIn the present study, a 14-3-3 protein-encoding gene from Glomus intraradices has been identified after differential hybridization of a cDNA library constructed from the fungus growing in vitro and subjected to drought stress by addition of 25% PEG 6000. Subsequently, we have studied its expression pattern under drought stress in vitro and also when forming natural symbioses with different host plants. The results obtained suggest that Gi14-3-3 gene may be involved in the protection that the arbuscular mycorrhizal (AM) symbiosis confers to the host plant against drought stress.
View Article and Find Full Text PDFIntra- and extraradical colonization competition and hyphal interactions among arbuscular mycorrhizal fungi (AMF) Glomus intraradices, Glomus proliferum and Gigaspora margarita were investigated in two in vitro experimental systems. AMF were polyxenically cultured with a Ri T-DNA transformed carrot root organ culture (ROC) in either big Petri plates containing three culture compartments and a common hyphal compartment (i.e.
View Article and Find Full Text PDFMonoxenic symbioses between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and two nontransformed tomato root organ cultures (ROCs) were established. Wild-type tomato ROC from cultivar "RioGrande 76R" was employed as a control for mycorrhizal colonization and compared with its mutant line (rmc), which exhibits a highly reduced mycorrhizal colonization (rmc) phenotype. Structural features of the two root lines were similar when grown either in soil or under in vitro conditions, indicating that neither monoxenic culturing nor the rmc mutation affected root development or behavior.
View Article and Find Full Text PDF