A photonic wire antenna embedding individual quantum dots (QDs) constitutes a promising platform for both quantum photonics and hybrid nanomechanics. We demonstrate here an integrated device in which on-chip electrodes can apply a static or oscillating bending force to the upper part of the wire. In the static regime, we achieve control over the bending direction and apply at will tensile or compressive mechanical stress on any QD.
View Article and Find Full Text PDFNanowire antennas embedding a single quantum dot (QD) have recently emerged as versatile platforms to realize bright sources of quantum light. In this theoretical work, we show that the thermally driven, low-frequency vibrations of the nanowire have a major impact on the QD light emission spectrum. Even at liquid helium temperatures, these prevent the emission of indistinguishable photons.
View Article and Find Full Text PDF