In this study, a micro-scale parallel plate reactor was built to electrochemically generate hydrogen peroxide (HO) and to develop the Fenton reaction in situ, for the treatment of toxic organic pollutants. Two types of carbon materials were compared and used as cathodes: unidirectional carbon fiber (CF) and reticulated vitreous carbon (RVC). As anode, a stainless steel mesh was used.
View Article and Find Full Text PDFPhotocatalysis has shown the ability to inactivate a wide range of harmful microorganisms with traditional use of chlorination. Photocatalysis combined with applied bias potential (photoelectrocatalysis) increases the efficiency of photocatalysis and decreases the charge recombination. This work examines the inactivation of fecal coliform bacteria present in real urban wastewater by photoelectrocatalysis using nanoparticulated films of TiO and TiO/Ag (4%w/w) under UV light irradiation.
View Article and Find Full Text PDFElectrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.
View Article and Find Full Text PDF