Publications by authors named "Albertina Ausema"

Cellular senescence is a stable type of cell cycle arrest triggered by different stresses. As such, senescence drives age-related diseases and curbs cellular replicative potential. Here, we show that 3-deazaadenosine (3DA), an S-adenosyl homocysteinase (AHCY) inhibitor, alleviates replicative and oncogene-induced senescence.

View Article and Find Full Text PDF

Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1 mouse model expressing an Npc1 null allele.

View Article and Find Full Text PDF

We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis.

View Article and Find Full Text PDF

MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression posttranscriptionally by binding to the 3' untranslated regions of their target mRNAs. The evolutionarily conserved microRNA-125a (miR-125a) is highly expressed in both murine and human hematopoietic stem cells (HSCs), and previous studies have found that miR-125 strongly enhances self-renewal of HSCs and progenitors. In this study we explored whether temporary overexpression of miR-125a would be sufficient to permanently increase HSC self-renewal or, rather, whether persistent overexpression of miR-125a is required.

View Article and Find Full Text PDF

Clonal heterogeneity fuels leukemia evolution, therapeutic resistance, and relapse. Upfront detection of therapy-resistant leukemia clones at diagnosis may allow adaptation of treatment and prevention of relapse, but this is hampered by a paucity of methods to identify and trace single leukemia-propagating cells and their clonal offspring. Here, we tested methods of cellular barcoding analysis, to trace the in vivo competitive dynamics of hundreds of patient-derived leukemia clones upon chemotherapy-mediated selective pressure.

View Article and Find Full Text PDF

Umbilical cord blood (UCB) provides an alternative source of hematopoietic stem cells (HSCs) for allogeneic transplantation. Administration of sufficient donor HSCs is critical to restore recipient hematopoiesis and to maintain long-term polyclonal blood formation. However, due to lack of unique markers, the frequency of HSCs among UCB CD34 cells is the subject of ongoing debate, urging for reproducible strategies for their counting.

View Article and Find Full Text PDF

Expansion of hematopoietic stem cells (HSCs) is a 'holy grail' of regenerative medicine, as successful stem cell transplantations depend on the number and quality of infused HSCs. Although many attempts have been pursued to either chemically or genetically increase HSC numbers, neither clonal analysis of these expanded cells nor their ability to support mature blood lineages has been demonstrated. Here we show that miR-125a, at the single cell level, can expand murine long-term repopulating HSCs.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) undergo a profound functional decline during normal aging. Because caloric or dietary restriction has been shown to delay multiple aspects of the aging process in many species, we explored the consequences of lifelong caloric restriction, or conversely, lifelong excess caloric intake, on HSC numbers and function. Although caloric restriction prevented age-dependent increases in bone marrow cellularity, caloric restriction was not able to prevent functional decline of aged, long-term HSC functioning.

View Article and Find Full Text PDF

The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR injury; however, the role of C5aR2 in IR injury is less clear as initial studies proposed the hypothesis that C5aR2 functions as a decoy receptor.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are crucial for proper functioning of hematopoietic stem and progenitor cells (HSPCs). Members of the miRNA-125 family (consisting of miR-125a, miR-125b1, and miR-125b2) are known to confer a proliferative advantage on cells upon overexpression, to decrease the rate of apoptosis by targeting proapoptotic genes, and to promote differentiation toward the myeloid lineage in mice. However, many distinct biological effects of the three miR-125 species have been reported as well.

View Article and Find Full Text PDF

Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecules can serve as tools to manipulate cell fate decisions.

View Article and Find Full Text PDF

The major limitation for the development of curative cancer therapies has been an incomplete understanding of the molecular mechanisms driving cancer progression. Human models to study the development and progression of chronic myeloid leukemia (CML) have not been established. Here, we show that BMI1 collaborates with BCR-ABL in inducing a fatal leukemia in nonobese diabetic/severe combined immunodeficiency mice transplanted with transduced human CD34(+) cells within 4-5 months.

View Article and Find Full Text PDF

Objective: Hematopoietic stem cells are key elements for life-long production of mature blood cells. The success of clinical stem cell transplantation may be improved when the number of stem cells that engraft after transplantation can be increased. Here, we investigated in a syngeneic mouse model whether engraftment and reconstitution can be improved by transplantation directly into the bone marrow.

View Article and Find Full Text PDF

Genetical genomics is a strategy for mapping gene expression variation to expression quantitative trait loci (eQTLs). We performed a genetical genomics experiment in four functionally distinct but developmentally closely related hematopoietic cell populations isolated from the BXD panel of recombinant inbred mouse strains. This analysis allowed us to analyze eQTL robustness/sensitivity across different cellular differentiation states.

View Article and Find Full Text PDF
Article Synopsis
  • Several studies have indicated that the p21 CDK inhibitor is important for maintaining the size of hematopoietic stem and progenitor cells.
  • In experiments with B6 mice, p21 deletion did not significantly alter the number or functionality of these stem cells, suggesting it isn't critical during normal conditions.
  • However, under stress from irradiation, p21 deficiency markedly reduced the ability of stem cells to repopulate, highlighting that p21 may play a more significant role when cells are under stress.
View Article and Find Full Text PDF

In this study, we demonstrate that extended culture of unfractionated mouse bone marrow (BM) cells, in serum-free medium, supplemented only with fibroblast growth factor (FGF)-1, FGF-2, or FGF-1 +2 preserves long-term repopulating hematopoietic stem cells (HSCs). Using competitive repopulation assays, high levels of stem cell activity were detectable at 1, 3, and 5 weeks after initiation of culture. FGFs as single growth factors failed to support cultures of highly purified Lin(-)Sca-1(+)c-Kit(+)(LSK) cells.

View Article and Find Full Text PDF

The haematopoietic system is a complex organised tissue with a hierarchical structure. Identification of organisational pathways within the haematopoietic system is relevant for a better understanding of haematopoiesis in health and disease. We have analysed numerous haematopoietic parameters in two panels of a total of 157 genetically distinct B6AKRF2 mice, derived from an intercross between AKR and C57Bl/6 mice, strains known to differ in various stem cell traits.

View Article and Find Full Text PDF

Adult somatic stem cells possess extensive self-renewal capacity, as their primary role is to replenish aged and functionally impaired tissues. We have previously shown that the stem cell pool in short-lived DBA/2 (D2) mice is reduced during aging, in contrast to long-lived C57BL/6 (B6) mice. This suggests the existence of a genetically determined mitotic clock operating in stem cells, which possibly limits organismal aging.

View Article and Find Full Text PDF

Objective: Autologous bone marrow transplantation in cancer patients is often preceded by multiple cycles of chemotherapy. In this study, we assessed in a mouse model whether stem cells were affected by prior chemotherapy.

Methods: Donor mice were treated with three consecutive injections of 150 mg/kg 5-fluorouracil (5-FU).

View Article and Find Full Text PDF

Low-toxicity conditioning regimens prior to bone marrow transplantation (BMT) are widely explored. We developed a new protocol using hematopoietic growth factors prior to low-dose total body irradiation (TBI) in recipients of autologous transplants to establish high levels of long-term donor cell engraftment. We hypothesized that treatment of recipient mice with growth factors would selectively deplete stem cells, resulting in successful long-term donor cell engraftment after transplantation.

View Article and Find Full Text PDF