Key Points: Late Na(+) current (INaL) contributes to action potential remodelling and Ca(2+)/Na(+) changes in heart failure. The molecular identity of INaL remains unclear. The contributions of different Na(+) channel isoforms, apart from the cardiac isoform, remain unknown.
View Article and Find Full Text PDFBackground: Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium.
View Article and Find Full Text PDFUnlabelled: Calpain is an intracellular Ca²⁺-activated protease that is involved in numerous Ca²⁺ dependent regulation of protein function in many cell types. This paper tests a hypothesis that calpains are involved in Ca²⁺-dependent increase of the late sodium current (INaL) in failing heart. Chronic heart failure (HF) was induced in 2 dogs by multiple coronary artery embolization.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2011
The emerging paradigm for Na(+) current in heart failure (HF) is that its transient component (I(NaT)) responsible for the action potential (AP) upstroke is decreased, whereas the late component (I(NaL)) involved in AP plateau is augmented. Here we tested whether Na(v)β(1)- and Na(v)β(2)-subunits can modulate I(NaL) parameters in normal and failing ventricular cardiomyocytes (VCMs). Chronic HF was produced in nine dogs by multiple sequential coronary artery microembolizations, and six dogs served as a control.
View Article and Find Full Text PDFWe elucidate the role of late Na+ current (INaL) for diastolic intracellular Ca2+ (DCa) accumulation in chronic heart failure (HF). HF was induced in 19 dogs by multiple coronary artery microembolizations; 6 normal dogs served as control. Ca2+ transients were recorded in field-paced (0.
View Article and Find Full Text PDFExperimental data accumulated over the past decade show the emerging importance of the late sodium current (I(NaL)) for the function of both normal and, especially, failing myocardium, in which I(NaL) is reportedly increased. While recent molecular studies identified the cardiac Na(+) channel (NaCh) alpha subunit isoform (Na(v)1.5) as a major contributor to I (NaL), the molecular mechanisms underlying alterations of I(NaL) in heart failure (HF) are still unknown.
View Article and Find Full Text PDFCardiovasc Hematol Agents Med Chem
October 2008
Most cardiac Na+ channels open transiently within milliseconds upon membrane depolarization and are responsible for the excitation propagation. However, some channels remain active during hundreds of milliseconds, carrying the so-called persistent or late Na+ current (I(NaL)) throughout the action potential plateau. I(NaL) is produced by special gating modes of the cardiac-specific Na+ channel isoform.
View Article and Find Full Text PDFAugmented and slowed late Na(+) current (I(NaL)) is implicated in action potential duration variability, early afterdepolarizations, and abnormal Ca(2+) handling in human and canine failing myocardium. Our objective was to study I(NaL) modulation by cytosolic Ca(2+) concentration ([Ca(2+)](i)) in normal and failing ventricular myocytes. Chronic heart failure was produced in 10 dogs by multiple sequential coronary artery microembolizations; 6 normal dogs served as a control.
View Article and Find Full Text PDFMost cardiac Na+ channels open transiently upon membrane depolarization and then are quickly inactivated. However, some channels remain active, carrying the so-called persistent or late Na+ current (INaL) throughout the action potential (AP) plateau. Experimental data and the results of numerical modeling accumulated over the past decade show the emerging importance of this late current component for the function of both normal and failing myocardium.
View Article and Find Full Text PDFBackground: Late Na(+) current (I(NaL)) in human and dog hearts has been implicated in abnormal repolarization associated with heart failure (HF). HF slows inactivation gating of late Na(+) channels, which could contribute to these abnormalities.
Aims: To test how altered gating affects I(NaL) time course, Na(+) influx, and action potential (AP) repolarization.
Background: Ventricular repolarization and contractile function are frequently abnormal in ventricular myocytes from human failing hearts as well as canine hearts with experimentally induced heart failure (HF). These abnormalities have been attributed to dysfunction involving various steps of the excitation-contraction coupling process, leading to impaired intracellular sodium and calcium homeostasis. We previously reported that the slow inactivating component of the Na(+) current (late I(Na)) is augmented in myocytes from failing hearts, and this appears to play a significant role in abnormal ventricular myocytes repolarization and function.
View Article and Find Full Text PDFObjective: We reported an ultraslow late Na+ current (INaL) in ventricular cardiomyocytes of human hearts. INaL has been implicated in regulation of action potential duration in normal hearts and repolarization abnormalities in failing hearts. We have also identified sodium channel (NaCh) gating modes including bursts (BM) and late scattered openings (LSM) that together comprise INaL; however, the contribution of these gating modes to Na+ current (INa) remains unknown.
View Article and Find Full Text PDFClinical and experimental evidence has recently accumulated about the importance of alterations of Na(+) channel (NaCh) function and slow myocardial conduction for arrhythmias in infarcted and failing hearts (i.e., heart failure, HF).
View Article and Find Full Text PDFPassive mechanical containment of failing left ventricle (LV) with the Acorn Cardiac Support Device (CSD) was shown to prevent progressive LV dilation in dogs with heart failure (HF) and increase ejection fraction. To examine possible mechanisms for improved LV function with the CSD, we examined the effect of CSD therapy on the expression of cardiac stretch response proteins, myocyte hypertrophy, sarcoplasmic reticulum Ca2+-ATPase activity and uptake, and mRNA gene expression for myosin heavy chain (MHC) isoforms. HF was produced in 12 dogs by intracoronary microembolization.
View Article and Find Full Text PDFJ Mol Cell Cardiol
November 2002
We previously reported an ultraslow inactivating late Na+ current (INaL) in left ventricular cardiomyocytes (VC) isolated from normal (NVC) and failing (FVC) human hearts. This current could play a role in heart failure-induced repolarization abnormalities. To identify properties of NaCh contributing to INaL, we examined early and late openings in cell-attached patches of HEK293 cells expressing human cardiac NaCh alpha-subunit (alpha-HEK) and in VC of one normal and three failing human hearts.
View Article and Find Full Text PDF