Publications by authors named "Albert Ziatdinov"

Nickel- and zinc-doped TiO(B) nanobelts were synthesized using a hydrothermal technique. It was found that the incorporation of 5 at.% Ni into bronze TiO expanded the unit cell by 4%.

View Article and Find Full Text PDF

The existence of zero-energy edge π-electronic states (zero modes) in turbostratic few-layer nanographenes (nanographites) has been established and the sensitivity of their characteristics to the presence of adsorbed chlorine molecules and covalent bonds of halogen with dangling edge carbon orbitals has been studied using a combination of wide- and small-angle X-ray diffraction, Raman spectroscopy, XPS, EPR and magnetic susceptibility experiments. The reversible change in density of the edge π-electronic states found under the influence of an adsorbate has been explained by their spin-splitting initiated with the transfer of a small part of the electron density from the nanographites to the adsorbate. The change of the sign of the temperature coefficient of the current carrier spin relaxation rate caused by the adsorbate has also been accounted for in the framework of this model as a consequence of interaction of mobile spins with edge spin-split (magnetically ordered) states.

View Article and Find Full Text PDF

Binding of Cu(2+), Ni(2+) and Ag(+) ions to polyallylamine (PAA), polyethylenimine (PEI), poly(N-2-(2-pyridyl)ethylallylamine) (PEPAA), poly(N-2-(2-pyridyl)ethylethylenimine) (PEPEI), and N-2-(2-pyridyl)ethylchitosan (PEC) has been investigated using batch sorption experiments, spectrophotometric titration, ESR, and XPS to elucidate how the structure of polymer precursors affects the ion binding efficiency of their pyridylethylated derivatives. It has been shown that pyridylethylation increases the sorption capacities of PAA and PEI cross-linked with epichlorohydrin toward Ag(+) and Ni(2+) ions, but does not improve or decrease that toward Cu(2+) ions. PEC was the most efficient material for Ag(+) ion sorption with the sorption capacity of 1.

View Article and Find Full Text PDF