There is no consensus on the exact role of the adaptive immune system in Parkinson's disease pathogenesis, although there is increasing evidence that it is somehow involved. Moreover, T cell infiltration in the brain has not been thoroughly studied in Parkinson's disease and no study has assessed the infiltration in incidental Lewy body diseases cases that are considered to be early presymptomatic stages of the disease. In this study, we performed an immunohistochemistry/immunofluorescence quantitative and phenotypic assessment of T cell infiltration in human substantia nigra pars compacta and analysed the correlations with neuronal death and synucleinopathy throughout different stages of the disease.
View Article and Find Full Text PDFIn Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin.
View Article and Find Full Text PDFThe possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons.
View Article and Find Full Text PDF