Aims: Association between whole blood viscosity (WBV) and an increased risk of cardiovascular disease (CVD) has been reported. However, the causal relationship between WBV and CVD remains not thoroughly investigated. The aim of this study was to investigate the causal relation between WBV and CVD.
View Article and Find Full Text PDFThere is increasing evidence that the complexity of the retinal vasculature measured as fractal dimension, D, might offer earlier insights into the progression of coronary artery disease (CAD) before traditional biomarkers can be detected. This association could be partly explained by a common genetic basis; however, the genetic component of D is poorly understood. We present a genome-wide association study (GWAS) of 38,000 individuals with white British ancestry from the UK Biobank aimed to comprehensively study the genetic component of D and analyse its relationship with CAD.
View Article and Find Full Text PDFDespite the clear potential of livestock models of human functional variants to provide important insights into the biological mechanisms driving human diseases and traits, their use to date has been limited. Generating such models via genome editing is costly and time consuming, and it is unclear which variants will have conserved effects across species. In this study we address these issues by studying naturally occurring livestock models of human functional variants.
View Article and Find Full Text PDFBackground And Objectives: Based on previous case reports and disease-based cohorts, a minority of patients with cerebral small vessel disease (cSVD) have a monogenic cause, with many also manifesting extracerebral phenotypes. We investigated the frequency, penetrance, and phenotype associations of putative pathogenic variants in cSVD genes in the UK Biobank (UKB), a large population-based study.
Methods: We used a systematic review of previous literature and ClinVar to identify putative pathogenic rare variants in , , , and .
Background: Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes.
Results: Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle.
Background: The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus' spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection.
Methods: We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.
Males and females present differences in complex traits and in the risk of a wide array of diseases. Genotype by sex (GxS) interactions are thought to account for some of these differences. However, the extent and basis of GxS are poorly understood.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential.
View Article and Find Full Text PDFIndirect genetic effects, the effects of the genotype of one individual on the phenotype of other individuals, are environmental factors associated with human disease and complex trait variation that could help to expand our understanding of the environment linked to complex traits. Here, we study indirect genetic effects in 80,889 human couples of European ancestry for 105 complex traits. Using a linear mixed model approach, we estimate partner indirect heritability and find evidence of partner heritability on ~50% of the analysed traits.
View Article and Find Full Text PDFHost-mediated lung inflammation is present, and drives mortality, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units.
View Article and Find Full Text PDFTo efficiently transform genetic associations into drug targets requires evidence that a particular gene, and its encoded protein, contribute causally to a disease. To achieve this, we employ a three-step proteome-by-phenome Mendelian Randomization (MR) approach. In step one, 154 protein quantitative trait loci (pQTLs) were identified and independently replicated.
View Article and Find Full Text PDFBackground: Lack of comprehensive functional annotations across a wide range of tissues and cell types severely hinders the biological interpretations of phenotypic variation, adaptive evolution, and domestication in livestock. Here we used a combination of comparative epigenomics, genome-wide association study (GWAS), and selection signature analysis, to shed light on potential adaptive evolution in cattle.
Results: We cross-mapped 8 histone marks of 1300 samples from human to cattle, covering 178 unique tissues/cell types.