Publications by authors named "Albert Schulte"

We report the synthesis of functionalized nanodots as potential powerful blockers of solute transport through a chitoporin. Ultrasmall silica nanocapsules with a diameter of ∼ 6 nm were coated with chitooligosaccharides to be used as a "lid" binding to the opening of the chitoporin VhChiP of Vibrio campbellii. Efficient blocking is attributed to the adequate size of the nanodots and their functionalization with oligochitosan, which has strong affinity towards the Vibrio chitoporin.

View Article and Find Full Text PDF

We describe a tiny 3D-printed polymethyl-methacrylate-based plastic sleeve that houses two disposable screen-printed electrodes (SPE) and enables each of the working electrodes (WEs) to work independently, on a different side of a thin barrier, in its own electrochemical (EC) mini-cell, while the SPE counter and reference units are shared for electroanalysis. Optical and EC performance tests proved that the plastic divider between WE1 and WE2 efficiently inhibited solution mixing between the mini-cells. The two neighboring, independently operating mini-cells enabled matched differential measurements in the same sample solution, a tactic designed for elimination of electrochemical interference in complex samples.

View Article and Find Full Text PDF

We describe a conductometric assay of the enzymatic conversion of glucose to gluconic acid by dissolved glucose oxidase (GOx), using the generation of proton and gluconate from the reaction product dissociation for glucose detection. Simple basics of ionic conductivity, a silver/silver chloride wire pair, and a small applied potential translate glucose-dependent GOx activity into a scalable cell current. Enzyme immobilization and complex sensor design, involving extra nanomaterials or microfabrication of electrode structures, are entirely avoided, in contrast to all modern electrochemical glucose biosensors.

View Article and Find Full Text PDF

Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages. Most importantly, it allows for spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes.

View Article and Find Full Text PDF

Described is chitinase immobilization on magnetic nanoparticles (MNPs) as biocompatible support for enzymatic production of di-N-acetyl chitobiose from chitin waste. Chitinase immobilization was feasible with an immobilization yield of 88.9 ± 1.

View Article and Find Full Text PDF

Since its introduction in 2014, laser-induced graphene (LIG) from commercial polymers has been gaining interests in both academic and industrial sectors. This can be clearly seen from its mass adoption in various fields ranging from energy storage and sensing platforms to biomedical applications. LIG is a 3-dimensional, nanoporous graphene structure with highly tuneable electrical, physical, and chemical properties.

View Article and Find Full Text PDF

Photocleavable protecting groups (PPGs) enable the precise spatiotemporal control over the release of a payload of interest, in particular a bioactive substance, through light irradiation. A crucial parameter that determines the practical applicability of PPGs is the efficiency of payload release, largely governed by the quantum yield of photolysis (QY). Understanding which parameters determine the QY will prove crucial for engineering improved PPGs and their effective future applications, especially in the emerging field of photopharmacology.

View Article and Find Full Text PDF

Photocleavable protecting groups (PPGs) enable the light-induced, spatiotemporal control over the release of a payload of interest. Two fundamental challenges in the design of new, effective PPGs are increasing the quantum yield (QY) of photolysis and red-shifting the absorption spectrum. Here we describe the combination of two photochemical strategies for PPG optimization in one molecule, resulting in significant improvements in both these crucial parameters.

View Article and Find Full Text PDF

We present a novel method for the electroanalysis of potassium ferricyanide-mediated bacterial electron transport, to rapidly assess viability and construct interpretable antimicrobial susceptibility profiles. Electrochemical minimum inhibitory concentrations (ecMICs) became determinable with a high correlation to the results from conventional assays.

View Article and Find Full Text PDF

Graphitic pencil leads (PLs) are inexpensive writing accessories, readily available in stationery shops. Because the round filaments have high conductivity, they are excellent candidates for sustainable electroanalytical sensor fabrication. Here, we show that dip-coated carbon nanotube (CNT) surface deposits can stably enhance the faradaic redox response of cylindrical pencil lead electrodes (PLEs), with just ten simple sequential immersions of assembled PLEs in an aqueous suspension of CNTs producing significant improvement in their analytical performance.

View Article and Find Full Text PDF

We overcome limitations of conventional methods to monitor the release of two payloads . The concentration of two different corrosion inhibitors are simultaneously determined during their release from nanofibers by square wave voltammetry (SWV). SWV is suitable for direct and simultaneous determination of concentration of two payloads.

View Article and Find Full Text PDF

For normal operations, microfluidic devices typically require an external source of pressure to deliver fluid flow through the microchannel. This requirement limits their use for benchtop research activities in a controlled static environment. To exploit the full potential of the miniaturization and portability of microfluidic platforms, passively driven capillary microfluidic devices have been developed to completely remove the need for an external pressure source.

View Article and Find Full Text PDF

Wearable devices are a new class of healthcare monitoring devices designed for use in close contact with the patient's body. Such devices must be flexible to follow the contours of human anatomy. With numerous potential applications, a wide variety of flexible wearable devices have been created, taking various forms and functions.

View Article and Find Full Text PDF

Tetra--fluoro-azobenzenes are a class of photoswitches useful for the construction of visible-light-controlled molecular systems. They can be used to achieve spatio-temporal control over the properties of a chosen bioactive molecule. However, the introduction of different substituents to the tetra-fluoro-azobenzene core can significantly affect the photochemical properties of the switch and compromise biocompatibility.

View Article and Find Full Text PDF

Charting the emergence of eukaryotic traits is important for understanding the characteristics of organisms that contributed to eukaryogenesis. Asgard archaea and eukaryotes are the only organisms known to possess regulated actin cytoskeletons. Here, we determined that gelsolins (2DGels) from Lokiarchaeota (Loki) and Heimdallarchaeota (Heim) are capable of regulating eukaryotic actin dynamics in vitro and when expressed in eukaryotic cells.

View Article and Find Full Text PDF

Photolabile protecting groups (PPGs) enable the precise activation of molecular function with light in many research areas, such as photopharmacology, where remote spatiotemporal control over the release of a molecule is needed. The design and application of PPGs in recent years have particularly focused on the development of molecules with high molar absorptivity at long irradiation wavelengths. However, a crucial parameter, which is pivotal to the efficiency of uncaging and which has until now proven highly challenging to improve, is the photolysis quantum yield (QY).

View Article and Find Full Text PDF

Novel glucose biosensors were constructed by loading glucose oxidase (GO) into the nanopores of homogenous carbon nanotube (CNT) films on the surface of Pt disk electrodes and trapping the enzyme by subsequent deposition of polyacrylic acid (PAA), forming PAA/GO-CNT-modified Pt disks. In amperometric biosensing with anodic hydrogen peroxide (HO) detection at a potential of +600 mV, increasing electrolyte glucose concentrations produced instantaneous steps in the HO oxidation current. Glucose biosensor amperometry was feasible down to 10 μM, with a sensitivity of about 34 μA mM cm and linear current response up to 5 mM.

View Article and Find Full Text PDF

Protein kinases are responsible for healthy cellular processes and signalling pathways, and their dysfunction is the basis of many pathologies. There are numerous small molecule inhibitors of protein kinases that systemically regulate dysfunctional signalling processes. However, attaining selectivity in kinase inhibition within the complex human kinome is still a challenge that inspires unconventional approaches.

View Article and Find Full Text PDF

We report the production and characterization of effective amperometric sensors for cathodic hydrogen peroxide (HO) detection. The proposed electrodes involve a combination of a HO-signaling Prussian Blue (PB)/carbon nanotube (CNT) layer with a glaze of the biopolymers gelatin (top) and zein (beneath) for protection against PB leakage. The sandwich-type sensor was constructed through simple "drop and dry" steps with (1) suspensions of the CNTs in a soluble PB solution, (2) zein in ethanol, and (3) gelatin in water, applied sequentially to the carbon working electrode disk of a screen-printed carbon electrode (SPCE) platform.

View Article and Find Full Text PDF

Photopharmacology uses light to regulate the biological activity of drugs. This precise control is obtained through the incorporation of molecular photoswitches into bioactive molecules. A major challenge for photopharmacology is the rational design of photoswitchable drugs that show light-induced activation.

View Article and Find Full Text PDF

Photolabile Protecting Groups (PPGs) are molecular tools used, for example, in photopharmacology for the activation of drugs with light, enabling spatiotemporal control over their potency. Yet, red-shifting of PPG activation wavelengths into the NIR range, which penetrates the deepest in tissue, has often yielded inefficient or insoluble molecules, hindering the use of PPGs in the clinic. To solve this problem, we report herein a novel concept in PPG design, by transforming clinically-applied NIR-dyes with suitable molecular orbital configurations into new NIR-PPGs using computational approaches.

View Article and Find Full Text PDF

Imaging of actin filaments is crucial due to the integral role that they play in many cellular functions such as intracellular transport, membrane remodelling and cell motility. Visualizing actin filaments has so far relied on fluorescence microscopy and electron microscopy/tomography. The former lacks the capacity to capture the overall local ultrastructure, while the latter requires rigorous sample preparation that can lead to potential artefacts, and only delivers relatively small volumes of imaging data at the thinnest areas of a cell.

View Article and Find Full Text PDF

The marine bacterium Vibrio campbellii expresses a chitooligosaccharide-specific outer-membrane channel (chitoporin) for the efficient uptake of nutritional chitosugars that are externally produced through enzymic degradation of environmental host shell chitin. However, the principles behind the distinct substrate selectivity of chitoporins are unclear. Here, we employed black lipid membrane (BLM) electrophysiology, which handles the measurement of the flow of ionic current through porins in phospholipid bilayers for the assessment of porin conductivities, to investigate the pH dependency of chitosugar-chitoporin interactions for the bacterium's natural substrate chitohexaose and its deacetylated form, chitosan hexaose.

View Article and Find Full Text PDF

-Acetyl-β-D-glucosaminidase (GlcNAcase) is a valuable biomarker for kidney health, as an increased urinary level of the enzyme indicates cell damage within the renal tubular filtration system from acute or chronic organ injury or exposure to nephrotoxic compounds. Effective renal function is vital for physiological homeostasis, and early detection of acute or chronic renal malfunction is critically important for timely treatment decisions. Here, we introduce a novel option for electrochemical urinalysis of GlcNAcase, based on anodic differential pulse voltammetry at boron-doped diamond disk sensors of the oxidizable product 4-nitrophenol (4NP), which is released by the action of GlcNAcase on the synthetic substrate 4NP--acetyl-β-D-glucosaminide (GlcNAc-4NP), added to the test solution as a reporter molecule.

View Article and Find Full Text PDF

Recently published studies have shown that microfluidic devices fabricated by in-house three-dimensional (3D) printing, computer numerical control (CNC) milling and laser engraving have a good quality of performance. The 3-in-1 3D printers, desktop machines that integrate the three primary functions in a single user-friendly set-up are now available for computer-controlled adaptable surface processing, for less than USD 1000. Here, we demonstrate that 3-in-1 3D printer-based micromachining is an effective strategy for creating microfluidic devices and an easier and more economical alternative to, for instance, conventional photolithography.

View Article and Find Full Text PDF