Sustained swimming induces beneficial effects on growth and energy metabolism in some fish species. However, the absence of a standardized exercise regimen that guarantees an optimal response to physical activity is due to the anatomical, behavioral, and physiological differences among species, and the different conditions of tests applied, which are especially notable for the early stages of cultured species. The objective of this study was to assess the growth and metabolic responses of European sea bass submitted to continuous and moderate exercise exposure, selecting a practical swimming speed from swimming tests of groups of five fingerlings.
View Article and Find Full Text PDFAquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood.
View Article and Find Full Text PDFSkeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes' expression, including the fusogens and .
View Article and Find Full Text PDFThe combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles.
View Article and Find Full Text PDFRecording the fillet lipid percentage in European seabass is crucial to control lipid deposition as a means toward improving production efficiency and product quality. The reference method for recording lipid content is solvent lipid extraction and is the most accurate and precise method available. However, it is costly, requires sacrificing the fish and grinding the fillet sample which limits the scope of applications, for example grading of fillets, recording live fish or selective breeding of fish with own phenotypes are all limited.
View Article and Find Full Text PDFThe physiological and endocrine benefits of sustained exercise in fish were largely demonstrated, and this work examines how the swimming activity can modify the effects of two diets (high-protein, HP: 54% proteins, 15% lipids; high-energy, HE: 50% proteins, 20% lipids) on different growth performance markers in gilthead sea bream juveniles. After 6 weeks of experimentation, fish under voluntary swimming and fed with HP showed significantly higher circulating growth hormone (GH) levels and plasma GH/insulin-like growth-1 (IGF-1) ratio than fish fed with HE, but under exercise, differences disappeared. The transcriptional profile of the GH-IGFs axis molecules and myogenic regulatory factors in liver and muscle was barely affected by diet and swimming conditions.
View Article and Find Full Text PDFSustained exercise promotes growth in different fish species, and in gilthead seabream we have demonstrated that it improves nutrient use efficiency. This study assesses for differences in growth rate, tissue composition and energy metabolism in gilthead seabream juveniles fed two diets: high-protein (HP; 54% protein, 15% lipid) or high energy (HE; 50% protein, 20% lipid), under voluntary swimming (VS) or moderate-to-low-intensity sustained swimming (SS) for 6 weeks. HE fed fish under VS conditions showed lower body weight and higher muscle lipid content than HP fed fish, but no differences between the two groups were observed under SS conditions.
View Article and Find Full Text PDFThe upward trend of seawater temperature has encouraged improving the knowledge of its consequences on fish, considering also the development of diets including vegetable ingredients as an approach to achieve a more sustainable aquaculture. This study aims to determine the effects on musculoskeletal growth of: (1) a high-water temperature of 28 °C (versus 21 °C) in gilthead sea bream juveniles () fed with a diet rich in palm oil and, (2) feeding the fish reared at 28 °C with two other diets containing rapeseed oil or an equilibrated combination of both vegetable oils. Somatic parameters and mRNA levels of growth hormone-insulin-like growth factors (GH-IGFs) axis-, osteogenic-, myogenic-, lipid metabolism- and oxidative stress-related genes in vertebra bone and/or white muscle are analyzed.
View Article and Find Full Text PDFFish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Due to the increasing use of vegetable oils (VO), their proportion in diets has lowered, affecting lipid metabolism and fillet composition. Rainbow trout cultured preadipocytes were treated with representative FA found in fish oils (EPA and DHA) or VO (linoleic, LA and alpha-linolenic, ALA acids), while EPA and LA were also orally administered, to evaluate their effects on adipogenesis and lipid metabolism.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2018
Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of and Ghrelin receptors (), and to study their responses to different nutritional conditions in gilthead sea bream () juveniles. The structure and phylogeny of was analyzed, and a tissue screening was performed.
View Article and Find Full Text PDFProteolytic systems exert an important role in vertebrate muscle controlling protein turnover, recycling of amino acids (AA) or its use for energy production, as well as other functions like myogenesis. In fish, proteolytic systems are crucial for the relatively high muscle somatic index they possess, and because protein is the most important dietary component. Thus in this study, the molecular profile of proteolytic markers (calpains, cathepsins and ubiquitin-proteasome system (UbP) members) were analyzed during gilthead sea bream (Sparus aurata) myogenesis in vitro and under different AA treatments.
View Article and Find Full Text PDF