Publications by authors named "Albert Sabadell-Rendon"

The Reverse Water Gas-Shift reaction (CO+H CO+HO) allows to balance syn-gas under industrial conditions. Nickel has been suggested as a potential catalyst but the temperature required is too high, more than 800 °C, limiting practical implementation but when lowering the temperature methanation occurs. Simulations via Density Functional Theory on well-defined surfaces have systematically failed to reproduce these experimental results.

View Article and Find Full Text PDF

Multiscale techniques integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors have been suggested but lack seamless implementation. The largest challenges in the multiscale modeling of reactors can be grouped into two main categories: catalytic complexity and the difference between time and length scales of chemical and transport phenomena. Here we introduce the Automated MUltiscale Simulation Environment AMUSE, a workflow that starts from Density Functional Theory (DFT) data, automates the analysis of the reaction networks through graph theory, prepares it for microkinetic modeling, and subsequently integrates the results into a standard open-source Computational Fluid Dynamics (CFD) code.

View Article and Find Full Text PDF