The non-line-of-sight (NLOS) imaging field encompasses both experimental and computational frameworks that focus on imaging elements that are out of the direct line-of-sight, for example, imaging elements that are around a corner. Current NLOS imaging methods offer a compromise between accuracy and reconstruction time as experimental setups have become more reliable, faster, and more accurate. However, all these imaging methods implement different assumptions and light transport models that are only valid under particular circumstances.
View Article and Find Full Text PDFNon-line-of-sight (NLOS) imaging aims to reconstruct partially or completely occluded scenes. Recent approaches have demonstrated high-quality reconstructions of complex scenes with arbitrary reflectance, occlusions, and significant multi-path effects. However, previous works focused on surface scattering only, which reduces the generality in more challenging scenarios such as scenes submerged in scattering media.
View Article and Find Full Text PDFGraphene has become the focus of extensive research efforts and it can now be produced in wafer-scale. For the development of next generation graphene-based electronic components, electrical characterization of graphene is imperative and requires the measurement of work function, sheet resistance, carrier concentration and mobility in both macro-, micro- and nano-scale. Moreover, commercial applications of graphene require fast and large-area mapping of electrical properties, rather than obtaining a single point value, which should be ideally achieved by a contactless measurement technique.
View Article and Find Full Text PDFElectronic applications of large-area graphene films require rapid and accurate methods to map their electrical properties. Here we present the first electrical resistance tomography (ERT) measurements on large-area graphene samples, obtained with a dedicated measurement setup and reconstruction software. The outcome of an ERT measurement is a map of the graphene electrical conductivity.
View Article and Find Full Text PDFWe present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall median conductivity variations of up to 15% were observed between laboratories, which are attributed mainly to the well-known temperature and humidity dependence of non-encapsulated graphene devices. We conclude that terahertz time-domain spectroscopy performed in either reflection mode or transmission modes are indeed very accurate methods for mapping electrical conductivity of graphene, and that both methods are interchangeable within measurement uncertainties.
View Article and Find Full Text PDFWe use terahertz transmission through limestone sedimentary rock samples to assess the macro and micro porosity. We exploit the notable water absorption in the terahertz spectrum to interact with the pores that are two orders of magnitude smaller (<1μm) than the terahertz wavelength. Terahertz water sensitivity provides us with the dehydration profile of the rock samples.
View Article and Find Full Text PDFSpatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer.
View Article and Find Full Text PDFBackground: Drug permeation through skin, or a synthetic membrane, from locally acting pharmaceutical products can be influenced by the permeation behaviour of pharmaceutical excipients.
Objective: Terahertz time-domain technology is investigated as a non-invasive method for a direct and accurate measurement of excipients permeation through synthetic membranes or human skin.
Methods: A series of in-vitro release and skin permeation experiments of liquid excipients (e.
A simple technique is reported to create 31 and 45 μm thick, graded-index Si films in the form of nanospirals on a Si substrate using a dynamic, oblique angle deposition technique. We show that the success in producing such a thick, nanostructured film without delamination from the Si substrate is primarily due to the nano-porous nature of the film which effectively eliminates the stress generated during growth. Effective refractive indices of 1.
View Article and Find Full Text PDFThe method allows retrieval of the absorbance of a sample without the need for a reference measurement. The method measures the dynamic variation of frequency resolution as the waveform is being acquired. In terahertz wave time-domain spectroscopy, the frequency resolution increases as the temporal window increases.
View Article and Find Full Text PDFWe report the use of terahertz (THz) spectroscopy to explore the spectral properties of eleven antibiotics commonly used in livestock production. Eight of the eleven antibiotics showed specific fingerprints in the frequency range between 0.1 and 2 THz.
View Article and Find Full Text PDFWe present terahertz (THz) reflective spectroscopic focal-plane imaging of four explosive and bio-chemical materials (2, 4-DNT, Theophylline, RDX and Glutamic Acid) at a standoff imaging distance of 0.4 m. The 2 dimension (2-D) nature of this technique enables a fast acquisition time and is very close to a camera-like operation, compared to the most commonly used point emission-detection and raster scanning configuration.
View Article and Find Full Text PDF