Publications by authors named "Albert Mukhamedzyanov"

In recent times, the rising prevalence of obesity and its associated comorbidities have had a severe impact on human health and social progress. Therefore, scientists are delving deeper into the pathogenesis of obesity, exploring the role of non-coding RNAs. Long non-coding RNAs (lncRNAs), once regarded as mere "noise" during genome transcription, have now been confirmed through numerous studies to regulate gene expression and contribute to the occurrence and progression of several human diseases.

View Article and Find Full Text PDF

The term "insulin resistance" is commonly understood as a decrease in the response of insulin-sensitive tissues to insulin at its sufficient concentration, leading to chronic compensatory hyperinsulinemia. Type 2 diabetes mellitus is based on mechanisms consisting in the development of resistance to insulin in target cells (hepatocytes, adipocytes, skeletal muscle cells), resulting in the termination of an adequate response of these tissues to interaction with insulin. Since in healthy people 75-80% of glucose is utilized by skeletal muscle, it is more likely that the main cause of insulin resistance is impaired insulin-stimulated glucose utilization by skeletal muscle.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a first-line priority among the problems facing medical science and public health in almost all countries of the world. The main problem of DM is the high incidence of damage to the cardiovascular system, which in turn leads to diseases such as myocardial infarction, stroke, gangrene of the lower extremities, blindness and chronic renal failure. As a result, the study of the molecular genetic mechanisms of the pathogenesis of DM is of critical importance for the development of new diagnostic and therapeutic strategies.

View Article and Find Full Text PDF

Aim: Intracranial aneurysms (IAs) are characterized by abnormal dilation and thinning of the cerebral vessels wall, leading to rupture and life-threatening aneurysmal subarachnoid hemorrhage (aSAH) condition. This dictates the need to find new biomarkers that predict the presence of IAs and the risk of their rupture. The aim of this study was to measure circulating miR-126 at various time points post-aSAH to identify the timing of peak levels.

View Article and Find Full Text PDF